11 results match your criteria: "Institute for Problems of Chemical Physics of Russian Academy of Sciences[Affiliation]"

Photo-switchable organic field-effect transistors (OFETs) represent an important platform for designing memory devices for a diverse array of products including security (brand-protection, copy-protection, keyless entry, etc.), credit cards, tickets, and multiple wearable organic electronics applications. Herein, we present a new concept by introducing self-assembled monolayers of donor-acceptor porphyrin-fullerene dyads as light-responsive triggers modulating the electrical characteristics of OFETs and thus pave the way to the development of advanced nonvolatile optical memory.

View Article and Find Full Text PDF

Water-soluble fullerene derivatives are actively investigated as potential drugs for cancer treatment due to their favorable membranotropic properties. Herein, cytotoxic effects of twenty fullerene derivatives with different solubilizing addends were evaluated in three different types of non-small-cell lung carcinoma (NSCLC). The potential structural descriptors of the solubilizing addends related to the inhibitory activities on each type of lung cancer cell were investigated by the quantitative structure-activity relationship (QSAR) approach.

View Article and Find Full Text PDF

All-inorganic lead halide perovskites, for example, CsPbI, are becoming more attractive for applications as light absorbers in perovskite solar cells because of higher thermal and photochemical stability as compared to their hybrid analogues. However, a specific drawback of the CsPbI absorber consists of the rapid phase transition from black to yellow nonphotoactive phase at low temperatures (e.g.

View Article and Find Full Text PDF

Background: Nanotechnology-based strategies in the treatment of cancer have potential advantages because of the favorable delivery of nanoparticles into tumors through porous vasculature.

Materials And Methods: In the current study, we synthesized a series of water-soluble fullerene derivatives and observed their anti-tumor effects on human lung carcinoma A549 cell lines. The quantitative structure-activity relationship (QSAR) modeling was employed to investigate the relationship between anticancer effects and descriptors relevant to peculiarities of molecular structures of fullerene derivatives.

View Article and Find Full Text PDF

Herein, we reveal for the first time a comprehensive mechanism of poorly investigated electrochemical decomposition of CHNHPbI using a set of microscopy techniques (optical, AFM, PL) and ToF-SIMS. We demonstrate that applied electric bias induces the oxidation of I to I, which remains trapped in the film in the form of polyiodides, and hence, the process can be conceivably reversed by reduction. On the contrary, reduction of organic methylammonium cation produces volatile products, which leave the film and thus make the degradation irreversible.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers synthesized water-soluble fullerene derivatives with amino acid and thioacid residues to explore their anticancer properties.
  • - These compounds inhibited lung cancer cell growth effectively without harming healthy endothelial cells and initiated cancer cell death through autophagy or apoptosis.
  • - The fullerene derivatives showed promising results in a zebrafish model and exhibited low toxicity in mice, suggesting potential for developing new selective antitumor drugs that target cancer cells while sparing normal cells.
View Article and Find Full Text PDF

We demonstrate a facile approach to designing transparent electron-collecting electrodes by depositing thin layers of medium and low work function metals on top of transparent conductive metal oxides (TCOs) such as ITO and FTO. The modified electrodes were fairly stable for months under ambient conditions and maintained their electrical characteristics. XPS spectroscopy data strongly suggested integration of the deposited metal in the TCO structure resulting in additional doping of the conducting oxide at the interface.

View Article and Find Full Text PDF

Delivering drugs to the central nervous system (CNS) is a major challenge in treating CNS-related diseases. Nanoparticles that can cross blood-brain barrier (BBB) are potential tools. In this study, water-soluble C fullerene derivatives with different types of linkages between the fullerene cage and the solubilizing addend were synthesized (compounds 1-3: C-C bonds, compounds 4-5: C-S bonds, compound 6: C-P bonds, and compounds 7-9: C-N bonds).

View Article and Find Full Text PDF

The influence of a water-soluble [60] fullerene derivative containing five residues of 3-phenylpropionic acid and a chlorine addend appended to the carbon cage (F-828) on serum-starving human embryo lung diploid fibroblasts (HELFs) was studied. Serum deprivation evokes oxidative stress in HELFs. Cultivation of serum-starving HELFs in the presence of 0.

View Article and Find Full Text PDF

Water-soluble fullerenes have been studied as potential nanovectors and therapeutic agents, but their possible toxicity is of concern. We have studied the effects of F-828, a soluble fullerene [C60] derivative, on diploid human embryonic lung fibroblasts (HELFs) in vitro. F-828 causes complex time-dependent changes in ROS levels.

View Article and Find Full Text PDF

In this study, we identified water-soluble C60 and C70 fullerene derivatives as a novel class of protein tyrosine phosphatase inhibitors. The evaluated compounds were found to inhibit CD45, PTP1B, TC-PTP, SHP2, and PTPβ with IC50 values in the low micromolar to high nanomolar range. These results demonstrate a new strategy for designing effective nanoscale protein tyrosine phosphatase inhibitors.

View Article and Find Full Text PDF