1,066 results match your criteria: "Institute for Physiology[Affiliation]"

Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network.

View Article and Find Full Text PDF

Mosquitoes are vectors of various pathogens that cause diseases in humans and animals. To prevent the outbreak of mosquito-borne diseases, it is essential to control vector populations, as treatment or vaccination for mosquito-borne diseases are often unavailable. Insect-specific viruses (ISVs) have previously been described as being potentially helpful against arboviral disease outbreaks.

View Article and Find Full Text PDF

Chemogenetic emulation of intraneuronal oxidative stress affects synaptic plasticity.

Redox Biol

April 2023

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Institute of Fundamental Neurology, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37075, Göttingen, Germany. Electronic address:

Oxidative stress, a state of disrupted redox signaling, reactive oxygen species (ROS) overproduction, and oxidative cell damage, accompanies numerous brain pathologies, including aging-related dementia and Alzheimer's disease, the most common neurodegenerative disorder of the elderly population. However, a causative role of neuronal oxidative stress in the development of aging-related cognitive decline and neurodegeneration remains elusive because of the lack of approaches for modeling isolated oxidative injury in the brain. Here, we present a chemogenetic approach based on the yeast flavoprotein d-amino acid oxidase (DAAO) for the generation of intraneuronal hydrogen peroxide (HO).

View Article and Find Full Text PDF

To examine whether and how the inspiratory neuronal network in the preBötzinger complex (preBötC) develops during the early postnatal period, we quantified the composition of the population of inspiratory neurons between postnatal day 1 (p1) and p10 by applying calcium imaging to medullary transverse slices in double-transgenic mice expressing fluorescent marker proteins. We found that putative excitatory and glycinergic neurons formed a majority of the population of inspiratory neurons, and the composition rates of these two inspiratory neurons inverted at p5-6. We also found that the activity patterns of these two types of inspiratory neurons became significantly well-synchronized with the inspiratory rhythmic bursting pattern in the preBötC within the first postnatal week.

View Article and Find Full Text PDF

The Popeye domain containing (POPDC) genes encode sarcolemma-localized cAMP effector proteins. Mutations in blood vessel epicardial substance (BVES) also known as POPDC1 and POPDC2 have been associated with limb-girdle muscular dystrophy and cardiac arrhythmia. Muscle biopsies of affected patients display impaired membrane trafficking of both POPDC isoforms.

View Article and Find Full Text PDF

In Silico Analysis of Nanoplastics' and β-amyloid Fibrils' Interactions.

Molecules

January 2023

Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Plastic pollution has become a global environmental threat, which leads to an increasing concern over the consequences of plastic exposition on global health. Plastic nanoparticles have been shown to influence the folding of proteins and influence the formation of aberrant amyloid proteins, therefore potentially triggering the development of systemic and local amyloidosis. This work aims to study the interaction between nanoplastics and β-amyloid fibrils to better understand the potential role of nanoplastics in the outbreak of neurodegenerative disorders.

View Article and Find Full Text PDF

Inhibitory top-down projections from zona incerta mediate neocortical memory.

Neuron

March 2023

Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModul Basics), University of Freiburg, 79106 Freiburg, Germany; IMBIT//BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany. Electronic address:

Top-down projections convey a family of signals encoding previous experiences and current aims to the sensory neocortex, where they converge with external bottom-up information to enable perception and memory. Whereas top-down control has been attributed to excitatory pathways, the existence, connectivity, and information content of inhibitory top-down projections remain elusive. Here, we combine synaptic two-photon calcium imaging, circuit mapping, cortex-dependent learning, and chemogenetics in mice to identify GABAergic afferents from the subthalamic zona incerta as a major source of top-down input to the neocortex.

View Article and Find Full Text PDF

Plastin 3 (PLS3) is an F-actin-bundling protein that has gained attention as a modifier of spinal muscular atrophy (SMA) pathology. SMA is a lethal pediatric neuromuscular disease caused by loss of or mutations in the Survival Motor Neuron 1 (SMN1) gene. Pathophysiological hallmarks are cellular maturation defects of motoneurons prior to degeneration.

View Article and Find Full Text PDF

Mechanosensitive Enteric Neurons (MEN) at Work.

Adv Exp Med Biol

January 2023

Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.

In the last decade, we characterized an enteric neuronal subpopulation of multifunctional mechanosensitive enteric neurons (MEN) while studying the gastrointestinal peristalsis. MEN have been described in a variety of gastrointestinal regions and species. This chapter summarizes existing data on MEN, describing their proportions, firing behaviors, adaptation musters, and chemical phenotypes.

View Article and Find Full Text PDF

GTPases of the Rho family are components of signaling pathways linking extracellular signals to the control of cytoskeleton dynamics. Among these, RAC1 plays key roles during brain development, ranging from neuronal migration to neuritogenesis, synaptogenesis, and plasticity. RAC1 activity is positively and negatively controlled by guanine nucleotide exchange factors (GEFs), guanosine nucleotide dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), but the specific role of each regulator is poorly known.

View Article and Find Full Text PDF

The primary motor cortex (M1) is involved in the control of voluntary movements and is extensively mapped in this capacity. Although the M1 is implicated in modulation of pain, the underlying circuitry and causal underpinnings remain elusive. We unexpectedly unraveled a connection from the M1 to the nucleus accumbens reward circuitry through a M1 layer 6-mediodorsal thalamus pathway, which specifically suppresses negative emotional valence and associated coping behaviors in neuropathic pain.

View Article and Find Full Text PDF

Enterococcus cecorum (EC) is one of the most relevant bacterial pathogens in modern broiler chicken production from an economic and animal welfare perspective. Although EC pathogenesis is generally well described, predisposing factors are still unknown. This study aimed to understand the effect of heat stress on the caecal microbiota, intestinal integrity, and EC pathogenesis.

View Article and Find Full Text PDF

Early life stress negatively impacts brain development and affects structure and function of parvalbumin immunopositive (PV+) inhibitory neurons. Main regulators of PV+ interneurons activity and plasticity are perineuronal nets (PNNs), an extracellular matrix formation that enwraps PV+ interneurons mainly in the neocortex and hippocampus. To experimentally address the impact of early life stress on the PNNs and PV+ interneurons in the medial prefrontal cortex and dorsal hippocampus in rats, we employed a 24 h maternal deprivation protocol.

View Article and Find Full Text PDF

The natriuretic peptides (NPs) ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide) mediate their widespread effects by activating the natriuretic peptide receptor-A (NPR-A), while C-type natriuretic peptide (CNP) acts via natriuretic peptide receptor-B (NPR-B). NPs are removed from the circulation by internalization via the natriuretic peptide clearance receptor natriuretic peptide receptor-C (NPR-C). In addition to their well-known functions, for instance on blood pressure, all three NPs confer significant cardioprotection and renoprotection.

View Article and Find Full Text PDF

The microRNA-200 family has wide-ranging regulatory functions in cancer development and progression. Above all, it is strongly associated with the epithelial-to-mesenchymal transition (EMT), a process during which cells change their epithelial to a mesenchymal phenotype and acquire invasive characteristics. More recently, miR-200 family members have also been reported to impact the immune evasion of cancer cells by regulating the expression of immunoinhibitory immune checkpoints (ICs) like PD-L1.

View Article and Find Full Text PDF

The corticomedullary osmotic gradient between renal cortex and medulla induces a specific spatial gene expression pattern. The factors that controls these differences are not fully addressed. Adaptation to hypertonic environment is mediated by the actions of the nuclear factor of activated T-cells 5 (NFAT5).

View Article and Find Full Text PDF

Probing top-down information in neocortical layer 1.

Trends Neurosci

January 2023

Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModul Basics), University of Freiburg, 79106 Freiburg, Germany; IMBIT//BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany. Electronic address:

Accurate perception of the environment is a constructive process that requires integration of external bottom-up sensory signals with internally generated top-down information. Decades of work have elucidated how sensory neocortex processes physical stimulus features. By contrast, examining how top-down information is encoded and integrated with bottom-up signals has been challenging using traditional neuroscience methods.

View Article and Find Full Text PDF

Integration of the CA2 region in the hippocampal network during epileptogenesis.

Hippocampus

March 2023

Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.

The CA2 pyramidal cells are mostly resistant to cell death in mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis, but they are aberrantly integrated into the epileptic hippocampal network via mossy fiber sprouting. Furthermore, they show increased excitability in vitro in hippocampal slices obtained from human MTLE specimens or animal epilepsy models. Although these changes promote CA2 to contribute to epileptic activity (EA) in vivo, the role of CA2 in the epileptic network within and beyond the sclerotic hippocampus is still unclear.

View Article and Find Full Text PDF

The activation of the p53 pathway has been associated with neuronal degeneration in different neurological disorders, including spinal muscular atrophy (SMA) where aberrant expression of p53 drives selective death of motor neurons destined to degenerate. Since direct p53 inhibition is an unsound therapeutic approach due carcinogenic effects, we investigated the expression of the cell death-associated p53 downstream targets , and in vulnerable motor neurons of SMA mice. Fluorescence hybridization (FISH) of SMA motor neurons revealed RNA as a promising candidate.

View Article and Find Full Text PDF

Status epilepticus induces chronic silencing of burster and dominance of regular firing neurons during sharp wave-ripples in the mouse subiculum.

Neurobiol Dis

December 2022

NYU Neuroscience Institute, New York University, New York, USA; Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany. Electronic address:

Sharp wave-ripples (SWRs) are hippocampal oscillations associated with memory consolidation. The subiculum, as the hippocampal output structure, ensures that hippocampal memory representations are transferred correctly to the consolidating neocortical regions. Because patients with temporal lobe epilepsy often develop memory deficits, we hypothesized that epileptic networks may disrupt subicular SWRs.

View Article and Find Full Text PDF

Modulation of the porcine intestinal microbiota in the course of Ascaris suum infection.

Parasit Vectors

November 2022

Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.

Background: The porcine roundworm Ascaris suum impairs feed conversion and weight gain, but its effects on intestinal microbiota remain largely unexplored.

Methods: Modulation of the intestinal microbiota was assessed in pigs that were infected once with 10,000 A. suum eggs and pigs that received a trickle infection (1000 eggs/day over 10 days), compared with a non-infected control group.

View Article and Find Full Text PDF

Selective TASK-1 Inhibitor with a Defined Structure-Activity Relationship Reduces Cancer Cell Proliferation and Viability.

J Med Chem

November 2022

Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile.

Chemical structures of selective blockers of TASK channels contain aromatic groups and amide bonds. Using this rationale, we designed and synthesized a series of compounds based on 3-benzamidobenzoic acid. These compounds block TASK-1 channels by binding to the central cavity.

View Article and Find Full Text PDF

Hypothalamic insulin expression remains unaltered after short-term fasting in female rats.

Endocrine

December 2022

Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia.

Purpose: Our previous study showed that 6-h fasting increased insulin expression in the hypothalamus of male rats. We, therefore, wanted to examine if this phenomenon occurs in female rats and whether it depended on the estrus cycle phase.

Methods: Female rats in proestrus or diestrus were either exposed to 6-h fasting or had ad libitum access to food.

View Article and Find Full Text PDF