5,939 results match your criteria: "Institute for Nanotechnology[Affiliation]"

The mitigation of high levels of phosphate (PO) and nitrate (NO) ions in water bodies, particularly in agricultural wastewater, holds paramount importance in curbing eutrophication within aquatic ecosystems. Herein, using experimental and computational techniques, the study explored the potential of naturally occurring South Africa heulandite (HEU) zeolite for the removal of PO and NO ions from synthetic wastewater in batch mode. The percentage removal of PO and NO was 59.

View Article and Find Full Text PDF

The development of multifunctional biochar with NiFeO for the adsorption of Cd (II) from water systems: The kinetics, thermodynamics, and regeneration.

J Environ Manage

January 2025

Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa. Electronic address:

High concentrations of Cd (II) in wastewater have been reported several times which attracted top research attention to mitigate the pollution impacts of the contaminant. Therefore, this study aimed to develop a Zn-doped NiFeO pinecone biochar composite (ZNiF@PB) for the adsorption of Cd (II) from wastewater. FTIR confirmed immobilization of PB on the surface of ZNiF by the presence of C = O at 1638 cm, COOH at 1385 cm, C-O at 1009 cm and Fe-O at 756 cm.

View Article and Find Full Text PDF

This study introduces the synthesis and characterization of advanced silica core-shell nanostructures, with an emphasis on the innovative Si-ACS (Silica Acorn Core-Shell) design and its modified counterparts. Employing the classic Stöber method, SiCore particles were first produced, followed by the creation of the acorn-like Si-ACS structures. A key aspect of this research is the exploration of the effects of CTAB and TEOS concentrations on the morphology and properties of the silica shells.

View Article and Find Full Text PDF

Traditional small molecule drugs often target protein activity directly, but challenges arise when proteins lack suitable functional sites. An alternative approach is targeted protein degradation (TPD), which directs proteins to cellular machinery for proteolytic degradation. Recent studies have identified additional E3 ligases suitable for TPD, expanding the potential of this approach.

View Article and Find Full Text PDF

The genetic origins and impacts of historical Papuan migrations into Wallacea.

Proc Natl Acad Sci U S A

December 2024

Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

Article Synopsis
  • The tropical region of Wallacea was first settled by modern humans around 50,000 years ago, with Austronesian seafarers arriving approximately 3,500 years ago.
  • Current populations in Wallacea show a mix of ancestries derived from both Papuan and Asian sources, suggesting interactions between local populations and Austronesian migrants, although much of the Papuan-related ancestry is traced back to migrations from New Guinea.
  • Recent genetic analysis, alongside archaeological and linguistic evidence, indicates that the population history of Wallacea has been significantly influenced by the movement of Papuan genes, languages, and cultures over the last 3,500 years.
View Article and Find Full Text PDF

PIK-75 (F7) is a potent multikinase inhibitor that targets p110α, DNA-PK, and p38γ. PIK-75 has shown potential as a therapy in preclinical cancer models, but it has not been used in the clinic, at least in part, due to limited solubility. We therefore developed a nanoparticle to encapsulate PIK-75 and enable targeted cellular delivery.

View Article and Find Full Text PDF

Thermoelectric Material Performance () Predictions with Machine Learning.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, Waterloo Data and Artificial Intelligence Institute and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Research efforts using the tools in machine- and deep learning models have begun to show success in predicting target properties such as thermoelectric (TE) properties, including the figure of merit (). These models were trained on various data sources that used experimental, crystallographic, and density functional theory (DFT) data. We developed an interpretable model on a huge experimental data set of ∼160,000 data points to predict the performance of thermoelectric materials.

View Article and Find Full Text PDF

Review of the Integrated Approaches for Monitoring and Treating Parabens in Water Matrices.

Molecules

November 2024

Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa.

Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed.

View Article and Find Full Text PDF

Phonon-Induced Wake Potential in a Graphene-Insulator -Graphene Structure.

Nanomaterials (Basel)

December 2024

Department of Applied Mathematics, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

The aim of this study is to explore the potential which arises in a graphene-insulator-graphene structure when an external charged particle is moving parallel to it with a speed smaller than the Fermi speed in graphene. This is achieved by employing the dynamic polarization function of graphene within the random phase approximation, where its π electrons are modeled as Dirac fermions, and utilizing a local dielectric function for bulk insulators. Three different insulators are considered: SiO, HfO, and AlO.

View Article and Find Full Text PDF

The study aims to elucidate the pharmacological mechanism of Rauvolfia tetraphylla against breast cancer through a comprehensive, multi-faceted approach. This includes molecular docking, molecular dynamics, and experimental validation. Initial screening via ADME analysis and network pharmacology identified key compounds and potential targets.

View Article and Find Full Text PDF

Targeted protein degradation (TPD) is a pharmacological strategy that eliminates specific proteins from cells by harnessing cellular proteolytic degradation machinery. In proteasome-dependent TPD, expanding the repertoire of E3 ligases compatible with this approach could enhance the applicability of this strategy across various biological contexts. In this study, we discovered that a somatic mutant of FBXW7, R465C, can be exploited by heterobifunctional compounds for targeted protein degradation.

View Article and Find Full Text PDF

Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption.

View Article and Find Full Text PDF

We investigate the effect of a mirror-symmetry plane in multiple-scattering media under plane-wave illumination along the symmetry plane. Designed and fabricated samples' optical transport properties are compared quantitatively with three-dimensional modeling. Strong polarization-dependent deviations of the bulk speckle-averaged intensity distribution at the symmetry plane are observed, showing either up to a factor 2 enhancement or complete suppression of the ensemble-averaged intensities.

View Article and Find Full Text PDF

In contrast to homogeneous enzyme catalysis, nanozymes are nanosized heterogeneous catalysts that perform reactions on a rigid surface. This fundamental difference between enzymes and nanozymes is often overlooked in kinetic studies and practical applications. In this article, using 14 nanozymes of various compositions (core@shell, metal-organic frameworks, metal, and metal oxide nanoparticles), we systematically demonstrate that nontypical features of nanozymes, such as multiple catalytic activities, chemical transformations, and aggregation, need to be considered in nanozyme catalysis.

View Article and Find Full Text PDF

Highly efficient removal of Pb from aqueous solution using polyaniline-cobalt composite nanorods: Kinetics, isotherm and mechanistic investigation.

Chemosphere

February 2025

Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, South Africa. Electronic address:

Article Synopsis
  • - Nanosized cobalt (Co) particles, in combination with polyaniline (PANI) to create composite nanorods (CNRs), show promise for removing toxic lead ions (Pb⁺) from water, with improved efficiency due to their enhanced surface properties.
  • - The PANI-Co CNRs demonstrated a high lead adsorption capacity of 1130 mg/g at 25 °C and achieved equilibrium within 60 to 150 minutes, indicating effective and rapid lead ion removal.
  • - Mechanistically, the process involves the adsorption and precipitation of lead onto the CNRs, which is followed by the reduction of lead to its metallic form, while other metal ions, like Cu, can interfere with this
View Article and Find Full Text PDF

Surface water from springs, rivers, and dams is often used as an unconventional drinking water source in rural areas where potable water is often unavailable. However, this practice carries significant health risks due to potential contaminants. In this study, the concentrations of arsenic (As) and chromium (Cr) were assessed seasonally using graphite furnace atomic absorption spectrometry (GFAAS).

View Article and Find Full Text PDF

Exploring sperm cell motion dynamics: Insights from genetic algorithm-based analysis.

Comput Struct Biotechnol J

December 2024

Department of Biomechanical Engineering, University of Twente, Twente, 7500 AE, the Netherlands.

Accurate analysis of sperm cell flagellar dynamics plays a crucial role in understanding sperm motility as flagella parameters determine cell behavior in the spatiotemporal domain. In this study, we introduce a novel approach by harnessing Genetic Algorithms (GA) to analyze sperm flagellar motion characteristics and compare the results with the traditional decomposition method based on Fourier analysis. Our analysis focuses on extracting key parameters of the equation approximating flagellar shape, including beating period time, bending amplitude, mean curvature, and wavelength.

View Article and Find Full Text PDF

Molecularly Imprinted Nanozymes with Substrate Specificity: Current Strategies and Future Direction.

Small

December 2024

Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China.

Molecular imprinting technology (MIT) stands out for its exceptional simplicity and customization capabilities and has been widely employed in creating artificial antibodies that can precisely recognize and efficiently capture target molecules. Concurrently, nanozymes have emerged as promising enzyme mimics in the biomedical field, characterized by their remarkable stability, ease of production scalability, robust catalytic activity, and high tunability. Drawing inspiration from natural enzymes, molecularly imprinted nanozymes combine the unique benefits of both MIT and nanozymes, thereby conferring biomimetic catalysts with substrate specificity and catalytic selectivity.

View Article and Find Full Text PDF

Out-of-Plane Longitudinal Sound Speed Determination in GaS by Broadband Time-Domain Brillouin Scattering.

ACS Omega

December 2024

The Ultrafast Electron Imaging Lab, Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Canada.

Two-dimensional semiconducting gallium sulfide (GaS) has garnered notable interest for its distinct structural and optical properties, which position it as a promising candidate material for various applications ranging from photodetection and photovoltaics to nonlinear frequency conversion. In this work, we determined the out-of-plane longitudinal sound velocity, , via impulsive time-domain femtosecond broadband Brillouin scattering measurements performed on a single flake-like GaS crystal. We obtained a value (3140 ± 20) m/s, which yields an out-of-plane compressive elastic constant, = (38.

View Article and Find Full Text PDF

Molecular-scale in-operando reconfigurable electronic hardware.

Nanoscale Horiz

December 2024

Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.

It is challenging to reconfigure devices at molecular length scales. Here we report molecular junctions based on molecular switches that toggle stably and reliably between multiple operations to reconfigure electronic devices at molecular length scales. Rather than static on/off switches that always revert to the same state, our voltage-driven molecular device dynamically switches between high and low conduction states during six consecutive proton-coupled electron transfer steps.

View Article and Find Full Text PDF

In photovoltaics, perovskite solar cells (PSCs) have shown efficiency improvement with scalable and low-cost fabrication. This work investigates the additions of surfactants to PSCs during and after cell fabrication, and how these surfactants enhance the performance of both PSCs and hybrid PSCs. Various types of surfactants were surveyed, including amphoteric, cationic, and non-ionic, in addition to other chemicals that are showing surfactant-like behavior.

View Article and Find Full Text PDF

Innovative photocatalytic systems designed to enhance efficiency of nitrogen fixation processes, specifically focusing on sustainable ammonia (NH) production strategies via dinitrogen (N) reduction into ammonia (NH). This process is critical for sustainable agriculture and energy production. To improve photocatalyst activity, catalyst stability and reusability, reduction efficiency due to electron/hole recombination, and light-absorption efficiency has drawn extensive attention.

View Article and Find Full Text PDF

Tailoring graphitized cellulose nanocrystal morphologies for robust barrier and mechanical enhancement of PPC composites for green active packaging.

Int J Biol Macromol

January 2025

Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. Electronic address:

Both nanocellulose and graphene nanosheets serve as exceptional fillers for biopolymers. However, there are limited materials that effectively combine the properties of these two fillers in Poly (propylene carbonate) (PPC) to enhance their overall properties. This study presents a meticulous approach to producing graphitized nanocellulose (GCNC) with tailored rod-like (R-GCNC) and spheres-like (S-GCNC) under low-temperature and ambient-pressure conditions.

View Article and Find Full Text PDF

Background: Researchers have shown substantial interest in bismuth oxide/reduced graphene oxide (BiO/RGO) nanocomposites due to their superior features that are not achievable by each material alone. The growing applications and manufacturing of BiO/RGO nanocomposites have raised concerns regarding their potential human health risks. This work was designed to explore the possible toxicity mechanisms of BiO/RGO nanocomposites in two distinct mammalian cell lines, normal rat kidney cells (NRK52E) and human liver cancer cells (HepG2).

View Article and Find Full Text PDF

Selection of Plastic-Binding DNA Aptamers for Microplastics Detection.

Angew Chem Int Ed Engl

November 2024

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.

Article Synopsis
  • Plastics, while essential in technology, are causing environmental issues due to microplastic contamination, leading to a need for better detection methods.
  • The study focused on isolating DNA aptamers for polyvinylchloride (PVC) and polystyrene (PS), revealing that the PVC-1 aptamer binds PVC six times more effectively than random DNA sequences.
  • Utilizing a fluorescently labeled PVC-1 aptamer, the research demonstrated the ability to detect microplastics as low as 1 mg and showed selectivity over other materials, suggesting potential for environmental monitoring applications.
View Article and Find Full Text PDF