A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session31dehrdj05bo44geu0626bddert429mf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Institute for Materials Research[Affili... Publications | LitMetric

4,137 results match your criteria: "Institute for Materials Research[Affiliation]"

A series of CoFe2O4 materials derived from metal-organic framework were successfully constructed by the solvent-thermal method. The morphology of a typical sample CoFe2O4-1 was mostly in the form of a cubic rod-like structure with a size distribution of 3.2 ± 0.

View Article and Find Full Text PDF

Novel Selectivity: Target of Gas Sensing Defined by Behavior.

Adv Mater

December 2024

Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan.

Traditional selectivity of gas sensors determined by the magnitude of the response value has significant limitations. The distinctive inversion sensing behavior not only defies the traditional sensing theory but also provides insight into defining selectivity. Herein, the novel definition of selectivity is established in a study with VO(M1).

View Article and Find Full Text PDF

Effect of Exposed Facets and Oxidation State of CeO Nanoparticles on CO Adsorption and Desorption.

ACS Sustain Chem Eng

May 2024

New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.

CeO nanoparticles exhibit potential as solid adsorbents for carbon dioxide (CO) capture and storage (CCS), offering precise control over various facets and enhancing their efficiency. This study investigated the adsorption and desorption behaviors of two types of CeO nanoparticles: cubic CeO with primarily {001} facets and polyhedral CeO with mainly {111} facets. The results showed that despite polyhedral CeO's lower quantity, it demonstrated successful adsorption-desorption cycles in both oxidized and reduced states.

View Article and Find Full Text PDF

Tunable redox-sensitive polymeric-lipid hybrid nanocarriers (RS-PLHNCs) were fabricated using homogenization and nanoprecipitation methods. These nanocarriers were composed of novel redox-cholesterol with disulfide linkages and synthesized by conjugating cholesterol with dithiodipropionic acid esterification. Berberine (BBR) was loaded into the fabricated nanocarriers to investigate the selective uptake of BBR by cancer cells as well as its release and enhanced cytotoxicity.

View Article and Find Full Text PDF

Reinterpretation of Report of Tetrataenite in Bulk Alloy Castings.

Adv Sci (Weinh)

December 2024

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.

After the publication of "Direct formation of hard-magnetic tetrataenite in bulk alloy castings" Ivanov et al., Advanced Science 10 (2022) 2204315, the authors identified a potential misinterpretation of the experimental data. Further work confirms that the original conclusions cannot be supported, and accordingly the paper is retracted.

View Article and Find Full Text PDF

The use of Ca metal in battery technology is a promising approach owing to its high energy density and sustainability. However, the increased battery resistance during extended cycling significantly narrows its application range. This study aimed to improve the long-term stability of Ca deposition by employing a dual-salt strategy based on calcium monocarborane, Ca(CBH), which demonstrated favorable Ca deposition characteristics as a single-salt electrolyte.

View Article and Find Full Text PDF

Benzoate-bridged paddlewheel diruthenium(II,II) complexes ([RuII,II2(RArCO)(L)] (L = axial ligand); [RuII,II2]) exhibit reversible redox activity involving the oxidized species [RuII,III2]. The redox activity can be finely tuned over a broad potential range by altering the substituent R on the benzoate-bridging ligand RArCO. The electronic contributions of the substituents R depend on their type and position, as was empirically demonstrated by Hammett for substituents at the - and -positions.

View Article and Find Full Text PDF

Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate's phase stiffness, thereby limiting critical temperatures - a phenomenon known as the BCS-BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (AC) that goes beyond the limits of the lattice BCS-BEC crossover.

View Article and Find Full Text PDF

A body-centered cubic (bcc) FeCo(B) is a current standard magnetic material for perpendicular magnetic tunnel junctions (-MTJs) showing both large tunnel magnetoresistance (TMR) and high interfacial perpendicular magnetic anisotropy (PMA) when MgO is utilized as a barrier material of -MTJs. Since the -MTJ is a key device of current spintronics memory, . spin-transfer-torque magnetoresistive random access memory (STT-MRAM), it attracts attention for further advance to explore new magnetic materials showing both large PMA and TMR.

View Article and Find Full Text PDF

Unlabelled: A hatching-distance-controlled lattice of 65.1Co28.2Cr5.

View Article and Find Full Text PDF

Solid-phase rare earth monoxides have been recently synthesized thin film epitaxy. However, it has been difficult to synthesize heavy rare earth monoxides owing to their severe chemical instability. In this study, rocksalt-type heavy rare earth monoxides REOs (RE = Tb, Dy, Er) were synthesized for the first time, as single-phase epitaxial thin films.

View Article and Find Full Text PDF

Development of a fully automated slurry sampling introduction system for GF-AAS and its application for the determination of cadmium in different matrices.

Anal Chim Acta

January 2025

Federal Institute for Materials Research and Testing, Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Straße 11, 12489, Berlin, Germany; Federal Institute for Materials Research and Testing, Division 1.4 - Process Analytical Technology, Richard-Willstätter-Straße 11, 12489, Berlin, Germany. Electronic address:

Article Synopsis
  • Graphite Furnace-Atomic Absorption Spectrometry (GF-AAS) is highly sensitive for trace element analysis but struggles with solid sample preparation, like soils and microplastics, due to time-consuming methods that increase measurement uncertainty and carbon footprints.
  • A novel autosampler extension has been developed to enhance GF-AAS by ensuring sample suspension stability and preventing evaporation and contamination, offering reliable results with impressive recovery rates in various materials.
  • This advancement streamlines trace element analysis in complex samples, making it an essential tool for environmental monitoring and regulatory compliance while improving accuracy and efficiency in high-throughput settings.
View Article and Find Full Text PDF

Expression of concern: An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles.

Analyst

December 2024

Institut de Recherche Interdisciplinaire (IRI), CNRS USR 3078, Université Lille1, Parc de la Haute Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.

Expression of concern for 'An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles' by Palaniappan Subramanian , , 2014, , 1726-1731, https://doi.org/10.1039/C3AN02045B.

View Article and Find Full Text PDF

Electron-beam induced Mn oxidation in TEM: Insights into the heating effect of Auger excitation.

Micron

December 2024

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.

Electron-beam irradiation of α-Mn triggers dramatic microstructural transformations. Transmission electron microscopy (TEM) reveals localized thinning and MnO formation within the irradiated area. Reduced thermal conductivity due to thinning suggests significant local temperature rise by electron-beam irradiation.

View Article and Find Full Text PDF

Breaking the angular dispersion limit in thin film optics by ultra-strong light-matter coupling.

Nat Commun

December 2024

Humboldt Centre for Nano- and Biophotonics, Institute for Light and Matter, Department of Chemistry, University of Cologne, Greinstr. 4-6, Köln, Germany.

Thin film interference is integral to modern photonics, e.g., allowing for precise design of high performance optical filters, photovoltaics and light-emitting devices.

View Article and Find Full Text PDF

In this paper, we demonstrate that chiral J-aggregates of porphyrins are able to detect minute chiral impurities, in this case, the presence of right-handed quartz in acid-activated K10 montmorillonite clay. Aggregation and symmetry breaking of 5,10,15,20-(tetra-4-carboxyphenyl) porphyrin (TCPP) and 5,10,15,20-(tetra-4-sulfonatophenyl) porphyrin (TPPS) were observed upon interaction with acid-activated montmorillonite clay (MMT-K10). A panel of characterization techniques, including UV-visible, electronic circular dichroism, IR, and vibrational circular dichroism spectroscopies, as well as X-ray scattering, were employed to investigate the aggregation of the confined TPPS and TCPP.

View Article and Find Full Text PDF

Universal Polaronic Behavior in Elemental Doping of MoS from First-Principles.

ACS Nano

December 2024

Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

Elemental doping of two-dimensional (2D) semiconductors is crucial for manipulating their electrical and optical properties and enhancing the performance of advanced 2D devices. However, doping methods, such as ion implantation and chemical vapor deposition, can produce various outcomes extensively, depending on the chemical environment. We systematically study the elemental doping of the monolayer MoS by using density-functional theory calculations, which identify thermally stable sites among atomic substitutions, surface adsorption, and lattice interstitials of 27 elemental dopants, along with their formation energies and charge transition levels.

View Article and Find Full Text PDF

Superspreading Wetting of Nanofluid Droplet Laden with Highly Dispersed Nanoparticles.

Langmuir

December 2024

WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai, Sendai, Miyagi 980-8577, Japan.

Article Synopsis
  • The study explored how nanofluids with tiny nanoparticles affect wetting properties, particularly at the contact line where droplets meet surfaces.
  • Unique superspreading behaviors were noted, with specific indices indicating a relationship between droplet size and time.
  • Advanced imaging techniques were used to analyze droplet shapes and the influence of surface tension and substrate energy on wetting, distinguishing their findings from previous research on surfactant solutions.
View Article and Find Full Text PDF

Metal matrix composites (MMCs) offer asignificant boost to achieve a wide range of advanced mechanical properties and improved performance for a variety of demanding applications. The addition of metal particles as reinforcement in MMCs is an exciting alternative to conventional ceramic reinforcements, which suffer from numerous shortcomings. Over the last two decades, various categories of metal particles, i.

View Article and Find Full Text PDF

Background: Human exposure to micro- and nanoplastic particles (MNPs) is inevitable but human health risk assessment remains challenging for several reasons. MNPs are complex mixtures of particles derived from different polymer types, which may contain plenty of additives and/or contaminants. MNPs cover broad size distributions and often have irregular shapes and morphologies.

View Article and Find Full Text PDF

Initiating or sustaining physical and chemical transformations with mechanical force - mechanochemistry - provides an opportunity for more sustainable chemical processes, and access to new chemical reactivity. These transformations, however, do not always adhere to 'conventional' chemical wisdom, making them difficult to design and rationalise. This challenge is exacerbated by the fact that not all mechanochemical transformations are equal, with mechanical force playing a different role in different types of processes.

View Article and Find Full Text PDF

Tin (Sn)-based catalysts have been widely studied for electrochemical CO reduction reaction (CORR) to produce formic acid, but the intricate influence of the structural sensitivity in single-atom Sn (e.g., Sn-N-C) and polyatomic Sn (e.

View Article and Find Full Text PDF

Coexisting Ferromagnetic-Antiferromagnetic State and Giant Anomalous Hall Effect in Chemical Vapor Deposition-Grown 2D CrTe.

ACS Nano

December 2024

Department of Physics and Astronomy, Birck Nanotechnology Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States.

Two-dimensional (2D) magnets, as an important member of the 2D material family, have emerged as a promising platform for spintronic devices. Herein, we report the chemical vapor deposition (CVD) growth of highly crystalline submillimeter-scale self-intercalated metallic 2D ferromagnetic (FM) trigonal chromium telluride (CrTe) flakes on inert mica substrates. Through magneto-optical and magnetotransport measurements, we unveil the exceptional magnetic properties of these 2D flakes.

View Article and Find Full Text PDF

Although a widely used and important industrial chemical, carbon disulfide (CS) poses a number of hazards due to its volatility and toxicity. As such, the development of multifunctional materials for the selective capture and easy recognition of CS is one of the crucial issues. Herein, we demonstrate completely selective CS adsorption among trials involving HO, alcohols, volatile organic compounds (including thiol derivatives), N, H, O, CH, CO, NO, and CO.

View Article and Find Full Text PDF

Laboratory leaching tests are tools to assess the mobility of environmental contaminants released from granular materials. Comparative leaching tests were performed using four PFAS-contaminated soils whose concentration patterns of 10 selected perfluoroalkyl and polyfluoroalkyl substances (PFAS) differed due to the two types of contamination sources. This study aimed to evaluate the equivalence of two usual laboratory-scale leaching test procedures, batch and column percolation tests, at liquid-to-solid ratios (L/S) of 2 l/kg, which is the current practice within the German assessment framework, and 10 l/kg (relevant for some EU regulations such as the landfill directive).

View Article and Find Full Text PDF