15,309 results match your criteria: "Institute for Materials[Affiliation]"

The end groups of three- and four-arm star-shaped polylactides (PLA) with trimethylolpropane and pentaerythritol core structures were functionalized with acetic acid. Reaction products with different degrees of functionalization were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Additional gradient elution liquid adsorption chromatography (GELAC) measurements were performed to determine the degree of functionalization.

View Article and Find Full Text PDF

The ability to tune the energy gap in bilayer graphene makes it the perfect playground for the study of the effects of internal electric fields, such as the crystalline field, which are developed when other layered materials are deposited on top of it. Here, we introduce a novel device architecture allowing simultaneous control over the applied displacement field and the crystalline alignment between two materials. Our experimental and numerical results confirm that the crystal field and electrostatic doping due to the interface reflect the 120° symmetry of the bilayer graphene/BN heterostructure and are highly affected by the commensurate state.

View Article and Find Full Text PDF

Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells.

View Article and Find Full Text PDF

Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.

View Article and Find Full Text PDF

We studied freshly collected, dried and herbarized leaf fragments of two palms, namely L. and L., most commonly used for palm-leaf manuscript (PLM) production in South (S) and Southeast Asia (SE) in order to reveal differences in their phytolith assemblages.

View Article and Find Full Text PDF

Mucus is a complex hydrogel that acts as a defensive and protective barrier in various parts of the human body. The rise in the level of viral infections has underscored the importance of advancing research into mucus-mimicking hydrogels for the efficient design of antiviral agents. Herein, we demonstrate the gram-scale synthesis of biocompatible, lignin-based virus-binding inhibitors that reduce waste and ensure long-term availability.

View Article and Find Full Text PDF

Charge transfer emission between π- and 4f-orbitals in a trivalent europium complex.

Commun Chem

January 2025

Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.

View Article and Find Full Text PDF

Although microporous carbons can perform well for CO2 separations under high pressure conditions, their energy-demanding regeneration may render them a less attractive material option. Here, we developed a large-pore mesoporous carbon with pore sizes centered around 20-30 nm using a templated technical lignin. During the soft-templating process, unique cylindrical supramolecular assemblies form from the copolymer template.

View Article and Find Full Text PDF

Productive biosensing techniques empowered by all-dielectric metasurfaces.

Front Bioeng Biotechnol

January 2025

Research Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan.

Artificially designed, functional nanostructured surfaces, called metasurfaces, are an emerging platform for biosensing. Two major types of metasurface biosensors have been reported: one is based on resonant-wavelength shift and the other is specialized for fluorescence (FL) detection. The all-dielectric metasurfaces that composed of periodic arrays of silicon nanocolumns have a series of optical magnetic-mode resonances, some of which were found to significantly enhance capability for FL detection of diverse target biomolecules, ranging from nucleic acid to antigens and antibodies.

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Molecular miscibility of ASD blend components: an evaluation of (the added value of) solid state NMR spectroscopy and relaxometry.

J Pharm Sci

January 2025

Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:

In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.

View Article and Find Full Text PDF

Crystal structure of submicron-sized sulfur particles using 3D ED obtained in atmospheric conditions.

Acta Crystallogr C Struct Chem

February 2025

Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium.

Lithium-sulfur batteries are a promising candidate for the next generation of rechargeable batteries. Despite extensive research on this system over the last decade, a complete understanding of the phase transformations has remained elusive. Conventional in-situ powder X-ray diffraction has struggled to determine the unit cell and space group of the polysulfides formed during charge and discharge cycles due to the high solubility of these solid products in the liquid electrolyte.

View Article and Find Full Text PDF

QCforever is a wrapper designed to automatically and simultaneously calculate various physical quantities using quantum chemical (QC) calculation software for blackbox optimization in chemical space. We have updated it to QCforever2 to search the conformation and optimize density functional parameters for a more accurate and reliable evaluation of an input molecule. In blackbox optimization, QCforever2 can work as compactly arranged surrogate models for costly chemical experiments.

View Article and Find Full Text PDF

Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.

View Article and Find Full Text PDF

AF4/ICP-ToF-MS for the investigation of species-specific adsorption of organometallic contaminants on natural colloidal particles.

J Hazard Mater

January 2025

Federal Institute for Materials Research and Testing (BAM), Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Straße 11, Berlin 12489, Germany. Electronic address:

Organotin (OT) compounds, while crucial in many industrial applications, pose substantial risks to the environment and human health. The toxicity and environmental behaviour of OTs depend on their chemical form, i.e.

View Article and Find Full Text PDF

The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.

View Article and Find Full Text PDF

The phase separation of high-density polyethylene (HDPE)-polypropylene (PP) blends was studied using atomic force microscopy in tapping mode to obtain height and phase images. The results are compared with those from scanning electron microscopy imaging and are connected to the thermomechanical properties of the blends, characterised through differential scanning calorimetry, dynamic mechanical analysis (DMA), and tensile testing. Pure PP, as well as 10:90 and 20:80 weight ratio HDPE-PP blends, showed a homogeneous morphology, but the 25:75 HDPE-PP blends exhibited a sub-micrometre droplet-matrix structure, and the 50:50 HDPE-PP blends displayed a more complex co-continuous nano/microphase-separated structure.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

This study aimed to investigate the release of metallic ions from cobalt-chromium (Co-Cr) alloys fabricated by additive manufacturing (AM) for comparison with dental casting. Co-Cr alloys were fabricated via AM using selective laser melting (SLM) and electron beam melting (EBM) in powder-bed fusion. Polished and mechanically ground specimens were prepared.

View Article and Find Full Text PDF

Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method.

Materials (Basel)

January 2025

Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan.

The sintered diffusion multiple (SDM) method, which has been developed in our research group, has been applied to determine the entire composition range of the CrMnFeCoNi high-entropy alloy stereoscopically and continuously over nearly the entire range. The samples were prepared by sintering mixed elemental powders and were annealed at 970 °C or 800 °C. Several hundreds of thousands of points were analyzed at random within the samples for chemical compositions using electron probe microanalysis.

View Article and Find Full Text PDF

Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.

View Article and Find Full Text PDF

We used density functional theory with a hybrid functional to investigate the structure and properties of [4H] (hydrogarnet) defects in -quartz as well as the reactions of these defects with electron holes and extra hydrogen atoms and ions. The results demonstrate the depassivation mechanisms of hydrogen-passivated silicon vacancies in -quartz, providing a detailed understanding of their stability, electronic properties, and behaviour in different charge states. While fully hydrogen passivated silicon vacancies are electrically inert, the partial removal of hydrogen atoms activates these defects as hole traps, altering the defect states and influencing the electronic properties of the material.

View Article and Find Full Text PDF

Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source.

Nanomaterials (Basel)

January 2025

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA.

In this study, a single zirconium carbide (ZrC) nanoneedle structure oriented in the <100> direction was fabricated by a dual-beam focused ion beam (FIB-SEM) system, and its field emission characteristics and emission current stability were evaluated. Benefiting from controlled fabrication with real-time observation, the ZrC nanoneedle has a smooth surface and a tip with a radius of curvature smaller than 20 nm and a length greater than 2 μm. Due to its low work function and well-controlled morphology, the ZrC nanoneedle emitter, positioned in a high-vacuum chamber, was able to generate a single and collimated electron beam with a current of 1.

View Article and Find Full Text PDF

Inertial Memory Effects in Molecular Transport Across Nanoporous Membranes.

Membranes (Basel)

January 2025

Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia.

Nanoporous membranes are heterogeneous structures, with heterogeneity manifesting at the microscale. In examining particle transport through such media, it has been observed that this transport deviates from classical diffusion, as described by Fick's second law. Moreover, the classical model is physically unsustainable, as it is non-causal and predicts an infinite speed of concentration perturbation propagation through a substantial medium.

View Article and Find Full Text PDF