1,344 results match your criteria: "Institute for Integrated Cell-Material Sciences[Affiliation]"

The architectural characteristics of metal-organic frameworks (MOFs) can be examined through their net topology, which consists of nodes and linkers. A node's connectivity and site symmetry are likely the key elements influencing the net topology of MOFs. Metal-organic polyhedra (MOPs) function effectively as nodes when used as supermolecular building blocks (SBBs).

View Article and Find Full Text PDF

Energy crisis and environmental pollution are two central themes of contemporary research towards achieving sustainable development goals (SDGs). Material chemistry is the chief discipline that can resolve glitches in these areas through the appropriate design of chemical compounds with multifunctional properties. In this regard, two stable coordination polymers (CPs) were synthesised in this work using Zn(II) (3d) and Cd(II) (d) metal nodes with 1,4-benzenedicarboxylate () as the bridging ligand and monodentate pyridyl-N coordinated 9-fluoren-2-yl-pyridin-4-ylmethylene-amine (flpy) as the fluorogenic partner.

View Article and Find Full Text PDF

Phosphatidylinositol 5-phosphate 4-kinases (PI5P4K), also known as type II PIPKs or PIPKIIs, convert the lipid second messenger PI5P to PI(4,5)P. The PI5P4K family consists of three isozymes in mammals-PI5P4Kα, β, and γ-which notably utilize both GTP and ATP as phosphodonors. Unlike the other two isozymes, which can utilize both ATP and GTP, PI5P4Kβ exhibits a marked preference for GTP over ATP, acting as an intracellular GTP sensor that alters its kinase activity in response to physiological changes in GTP concentration.

View Article and Find Full Text PDF

Covalent Plant Natural Product that Potentiates Antitumor Immunity.

J Am Chem Soc

January 2025

Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan.

Despite the unprecedented therapeutic potential of immune checkpoint antibody therapies, their efficacy is limited partly by the dysfunction of T cells within the cancer microenvironment. Combination therapies with small molecules have also been explored, but their clinical implementation has been met with significant challenges. To search for antitumor immunity activators, the present study developed a cell-based system that emulates cancer-attenuated T cells.

View Article and Find Full Text PDF

We report a direct application of the molecular tailoring approach-based (MTA-based) method to calculate the individual hydrogen bond (HB) energy in molecular crystal. For this purpose, molecular crystals of nitromalonamide (NMA) and salicylic acid (SA) were taken as test cases. Notably, doing a correlated computation using a large molecular crystal structure is difficult.

View Article and Find Full Text PDF

Phase Control in Monometallic and Alloy Nanomaterials.

Chem Rev

January 2025

Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.

Metal nanomaterials with unconventional phases have been recently developed with a variety of methods and exhibit novel and attractive properties such as high activities for various catalytic reactions and magnetic properties. In this review, we discuss the progress and the trends in strategies for synthesis, crystal structure, and properties of phase-controlled metal nanomaterials in terms of elements and the combination of alloys. We begin with a brief introduction of the anomalous phase behavior derived from the nanosize effect and general crystal structures observed in metal nanomaterials.

View Article and Find Full Text PDF

Autocatalytic Interfacial Synthesis of Self-Standing Amide-Linked Covalent Organic Framework Membranes.

Angew Chem Int Ed Engl

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.

The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP).

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Clock-Sleep Communication.

Curr Mol Med

December 2024

Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.

Rhythmicity is a characteristic feature of the inanimate universe. The organization of biological rhythms in time is an adaptation to the cyclical environmental changes brought on by the earth's rotation on its axis and around the sun. Circadian (L.

View Article and Find Full Text PDF

Electronic regulation of single-atomic Ti sites on metal hydroxide for boosting photocatalytic CO reduction.

Chem Sci

January 2025

Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China

Photocatalytic CO reduction is considered a sustainable method to address energy and environmental issues by converting CO into fuels and chemicals, yet the performance is still unsatisfactory. Single atom catalysts hold promising potential in photocatalysis, but the selection of metal species is still limited, especially in early transition metals. Herein, inspired by the structure of anatase TiO, single Ti sites were successfully incorporated into a metal hydroxide support for the first time cationic defects, significantly enhancing the photocatalytic performance by more than 30 times (from 0.

View Article and Find Full Text PDF

We created different amorphous structures of a coordination polymer by applying mechanical shear forces. One-dimensional Cu(TfN)(bip) (1, TfN = bis(trifluoromethanesulfonyl)imide, bip = 1,3-bis(1-imidazolyl)propane) melted at 245 °C and underwent a glass transition at -10 °C by a static cooling process. 1 formed another amorphous state with a distinct glass transition point of 70 °C under oscillatory shear stress.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how SARS-CoV-2 buds and transports its virions from the ERGIC to the cell surface, revealing that the vesicles involved have a protein coat known as coatomer complex I (COPI).
  • - Researchers observed that during infection, the distribution of COPI and the ERGIC changed, suggesting they play a role in the virus's replication process.
  • - Depleting a key COPI component, COPB2, confined the SARS-CoV-2 virions within the ERGIC and significantly reduced viral release, indicating that targeting COPI could be a potential strategy for developing antiviral treatments.
View Article and Find Full Text PDF

Although a widely used and important industrial chemical, carbon disulfide (CS) poses a number of hazards due to its volatility and toxicity. As such, the development of multifunctional materials for the selective capture and easy recognition of CS is one of the crucial issues. Herein, we demonstrate completely selective CS adsorption among trials involving HO, alcohols, volatile organic compounds (including thiol derivatives), N, H, O, CH, CO, NO, and CO.

View Article and Find Full Text PDF

Umbrella-Shaped -Terphenyls for Highly π-Extended Planar Dyes toward High-Performance Dye-Sensitized Solar Cells.

ACS Appl Mater Interfaces

December 2024

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

Article Synopsis
  • Porphyrin dyes with extended structures show promise as efficient sensitizers for dye-sensitized solar cells (DSSCs), but their performance is hindered by aggregation and charge recombination issues.
  • Adding umbrella-shaped -terphenyl groups to these dyes can reduce these problems, enabling better performance in DSSCs.
  • The study achieved a power conversion efficiency (PCE) of 12.3% with a co-sensitized DSSC, the highest reported for such dyes, validating the effectiveness of the terphenyl group design in enhancing solar cell efficiency.
View Article and Find Full Text PDF

The discovery of small organic compounds for inducing stem cell differentiation is a time- and resource-intensive process. While data science could, in principle, streamline the discovery of these compounds, novel approaches are required due to the difficulty of acquiring training data from large numbers of example compounds. In this paper, we present the design of a new compound for inducing cardiomyocyte differentiation using simple regression models trained with a data set containing only 80 examples.

View Article and Find Full Text PDF

Acute kidney injury (AKI), typically caused by ischemia, is a common clinical complication with a poor prognosis. Although proteinuria is an important prognostic indicator of AKI, the underlying causal mechanism remains unclear. In vitro studies suggest that podocytes have high ATP demands to maintain their structure and function, however, analyzing their ATP dynamics in living kidneys has been technically challenging.

View Article and Find Full Text PDF

Correction: Second-shell modulation on porphyrin-like Pt single atom catalysts for boosting oxygen reduction reaction.

Chem Sci

November 2024

Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China

Article Synopsis
  • This text is a correction to a previously published article identified by the DOI: 10.1039/D4SC03369H.
  • The correction likely addresses errors or inaccuracies found in the original article.
  • The purpose is to ensure that the scientific record is accurate and reflects the correct information. *
View Article and Find Full Text PDF

Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation.

Nat Commun

November 2024

Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan.

The capability of materials to interconvert between different phases provides more possibilities for controlling materials' properties without additional chemical modification. The study of state-changing microporous materials just emerged and mainly involves the liquefication or amorphization of solid adsorbents into liquid or glass phases by adding non-porous components or sacrificing their porosity. The material featuring reversible phases with maintained porosity is, however, still challenging.

View Article and Find Full Text PDF

Encapsulation of a single protein within a confined space can lead to distinct properties compared to bulk solutions, but controlling the number of encapsulated proteins and their environment remains challenging. This study demonstrates the encapsulation of single proteins within well-defined, tunable cavities of self-assembled coordination cages, thereby enhancing protein stability. Within uniform cavities of size-tunable coordination cages, 15 different proteins of varying sizes (3-6 nm in diameter) and properties (e.

View Article and Find Full Text PDF

We observe both s-series and p-series excitons by using sum frequency generation spectroscopy on monolayer (1L-)MX (M = Mo, W, X = S, Se) encapsulated by hexagonal boron nitride (hBN). Moreover, we perform numerical calculations with the Rytova-Keldysh potential and obtain the relative dielectric constant of hBN among other parameters. The obtained relative dielectric constant can be approximated by the high-frequency limit of the infrared dispersion even though the exciton binding energies are almost on the phonon resonances in hBN.

View Article and Find Full Text PDF

Triangle Pd sandwich complexes with two face-capping π-cyclic ligands, [Pd(Cm)(Cn)L] [L = acetonitrile; Cm, Cn = benzene, cycloheptatriene (CHT), cyclooctatetraene (COT), and [2.2]cyclophane (PCP)], are theoretically investigated. The stability increases in the order [Pd(CH)L] ∼ [Pd(CHMe)L] (CHMe = -xylene) < [Pd(COT)L] < < and [Pd(CH)L] ∼ [Pd(CH)(CHMe)L] < [Pd(CH)(PCP)L] < [Pd(CH)(CHT)L] < < [Pd(CHT)(PCP)L] < , where "bold" represents an experimentally isolated complex.

View Article and Find Full Text PDF

Membrane proteins (MPs) play important roles in various cellular processes and are major targets for drugs. Solubilization of MPs is often needed for structural and biophysical studies. For high-resolution nuclear magnetic resonance measurements, there is a size limit of the sample (<100 kDa), and a high thermal stability at an increased temperature is required.

View Article and Find Full Text PDF

Controlling Guest Diffusion by Local Dynamic Motion in Soft Porous Crystals to Separate Water Isotopologues and Similar Gases.

Acc Chem Res

December 2024

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

Article Synopsis
  • Effective separation of similar mixtures is a key challenge in chemical research, especially for light hydrocarbons and aromatic compounds, where traditional methods like distillation are energy-intensive but inefficient.
  • Molecules that are remarkably similar, such as oxygen/argon, present even greater separation difficulties due to minimal size and boiling-point differences, necessitating new approaches.
  • Our research group has been exploring locally flexible porous coordination polymers (PCPs) since 2017, which can manipulate pore apertures locally, offering a promising pathway to improve the efficiency of separating these challenging mixtures.
View Article and Find Full Text PDF