4 results match your criteria: "Institute for Immunology and Virology Torlak[Affiliation]"

Autoimmunity in the brain: the pathogenesis insight from cell biology.

Ann N Y Acad Sci

June 2007

Immunology Research Center, Department of Neuroimmunology, Institute for Immunology and Virology-Torlak, Belgrad, Serbia.

The aim of the study is to explore the relationship between leakage of the blood-brain barrier and inflammation, the reason why demyelination occurs--seemingly in the absence of an antigen-specific immune response that requires explanation if a coherent account of an inflammatory-mediated demyelination is to be achieved. In this study the cellular biology of the glial cells important for the synthesis and maintenance of central nervous system (CNS) myelin and their inter-relations with other environmental cells (neuronal, microglial, olygodendroglial, astrocytes, endothelial, epithelial, T lymphocytes, B lymphocytes, monocytes, and macrophages) and with the compound of the extracellular matrix (ECM) during the development of an autoimmune inflammatory and demyelinating processes in the brain was analyzed. Upon activation in the peripheral tissue, immune cells reach their target organ via bloodstream and interacting with blood vessels wall components in the absence of exogenous stimulus mount an attack against the local milleu, which is the starting point of a pathogenic inflammatory reaction.

View Article and Find Full Text PDF

The present study was undertaken in order to further clarify putative role of the adrenergic innervation in the regulation of the intrathymic T-cell maturation. For this purpose adult male DA rats were subjected to either 4-day- or 16-day-long propranolol treatment (0.40 mg propranolol/100 g/day, s.

View Article and Find Full Text PDF

The study was undertaken to further elucidate a role of gonadal hormones in maintenance of normal thymocyte maturation and sexual dimorphism in the intrathymic T-cell development. Rats of both sexes were gonadectomized or sham-gonadectomized (controls) at age of 2 and 6 months, and 30 days later the thymus size, cellularity and thymocyte composition were evaluated. In both control and gonadectomized rats, in spite of age, sexual dimorphism in the thymus size and cellularity was found.

View Article and Find Full Text PDF

This study examined the effects of the principal ovarian steroids, 17 beta-estradiol (E) and progesterone (P), on the thymic structure and on the intrathymic development of T-cells. Adult female rats were ovariectomized (OVX) and treated for 14 days with physiological doses of either E or P; controls received an equivalent volume of vehicle. Ovariectomy produced a marked increase (vs.

View Article and Find Full Text PDF