Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session91g1lao27qvluqsudrtshrvmqa0dn630): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
3 results match your criteria: "Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry[Affiliation]"
Curr Opin Biotechnol
June 2012
Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, United States.
Photosynthetic organisms are responsible for converting sunlight into organic matter, and they are therefore seen as a resource for the renewable fuel industry. Ethanol and esterified fatty acids (biodiesel) are the most common fuel products derived from these photosynthetic organisms. The potential of algae as producers of biodiesel precursor (or triacylglycerols (TAGs)) has yet to be realized because of the limited knowledge of the underlying biochemistry, cell biology and genetics.
View Article and Find Full Text PDFGenome Biol
July 2006
UCLA-DOE Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.
In several natural settings, the standard genetic code is expanded to incorporate two additional amino acids with distinct functionality, selenocysteine and pyrrolysine. These rare amino acids can be overlooked inadvertently, however, as they arise by recoding at certain stop codons. We report a method for such recoding prediction from genomic data, using read-through similarity evaluation.
View Article and Find Full Text PDFNat Struct Biol
September 2003
Howard Hughes Medical Institute, Molecular Biology Institute, UCLA-DOE Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1570, USA.
The infectious form of prion protein, PrP(Sc), self-propagates by its conversion of the normal, cellular prion protein molecule PrP(C) to another PrP(Sc) molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrP(C) to PrP(Sc). Here we show that recombinant hamster prion protein is converted to a second form, PrP(RDX), by a redox process in vitro and that this PrP(RDX) form seeds the conversion of other PrP(C) molecules to the PrP(RDX) form.
View Article and Find Full Text PDF