170 results match your criteria: "Institute for Genome Biology[Affiliation]"

Blood values of calcium (Ca), inorganic phosphorus (IP), and alkaline phosphatase activity (ALP) are valuable indicators for mineral status and bone mineralization. The mineral homeostasis is maintained by absorption, retention, and excretion processes employing a number of known and unknown sensing and regulating factors with implications on immunity. Due to the high inter-individual variation of Ca and P levels in the blood of pigs and to clarify molecular contributions to this variation, the genetics of hematological traits related to the Ca and P balance were investigated in a German Landrace population, integrating both single-locus and multi-locus genome-wide association study (GWAS) approaches.

View Article and Find Full Text PDF

Tissue sensitivity to glucocorticoids is a key factor dictating outcome of their homeostatic and therapeutic action, whereby liver represents one of the major peripheral targets. Here, we used pigs carrying a natural gain-of-function glucocorticoid receptor (GR) variant Ala610Val (GR) as a model to identify genes and pathways related to differential glucocorticoid sensitivity. Animals with different GR genotypes were treated either with saline or two different doses of dexamethasone.

View Article and Find Full Text PDF

Haplotypes of coping behavior associated QTL regions reveal distinct transcript profiles in amygdala and hippocampus.

Behav Brain Res

October 2019

Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany. Electronic address:

Stress response and coping behavior in pigs are largely shaped by hypothalamic-pituitary-adrenal axis and sympatho-adrenomedullary system action. However, the dynamic interaction between amygdala and hippocampus crucially modulates the behavioral response towards significant emotional events. While this functional relationship is well documented, the molecular underpinnings still remain insufficiently understood.

View Article and Find Full Text PDF

Epigenome-wide skeletal muscle DNA methylation profiles at the background of distinct metabolic types and ryanodine receptor variation in pigs.

BMC Genomics

June 2019

Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Rostock, Germany.

Background: Epigenetic variation may result from selection for complex traits related to metabolic processes or appear in the course of adaptation to mediate responses to exogenous stressors. Moreover epigenetic marks, in particular the DNA methylation state, of specific loci are driven by genetic variation. In this sense, polymorphism with major gene effects on metabolic and cell signaling processes, like the variation of the ryanodine receptors in skeletal muscle, may affect DNA methylation.

View Article and Find Full Text PDF

Genetic Regulation of Liver Metabolites and Transcripts Linking to Biochemical-Clinical Parameters.

Front Genet

April 2019

Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Dummerstorf, Germany.

Given the central metabolic role of the liver, hepatic metabolites and transcripts reflect the organismal physiological state. Biochemical-clinical plasma biomarkers, hepatic metabolites, transcripts, and single nucleotide polymorphism (SNP) genotypes of some 300 pigs were integrated by weighted correlation networks and genome-wide association analyses. Network-based approaches of transcriptomic and metabolomics data revealed linked of transcripts and metabolites of the pentose phosphate pathway (PPP).

View Article and Find Full Text PDF

Liver is a metabolically complex organ that influences nutrient partitioning and potentially modulates the efficiency of converting energy acquired from macronutrients ingestion into a muscle and/or adipose tissue (referred to as feed efficiency, FE). The objective of this study was to sequence the hepatic tissue transcriptome of closely related but differently feed efficient pigs ( = 16) and identify relevant biological processes that underpin the differences in liver phenotype between FE groups. Liver weight did not significantly differ between the FE groups, however, blood parameters showed that total protein, glucose, cholesterol and percentage of lymphocytes were significantly greater in high-FE pigs.

View Article and Find Full Text PDF

Genome wide association study was conducted using a mixed linear model (MLM) approach that accounted for family structure to identify single nucleotide polymorphisms (SNPs) and candidate genes associated with body weight (BW) and feed efficiency (FE) traits in a broiler chicken population. The results of the MLM approach were compared with the results of a general linear model approach that does not take family structure in to account. In total, 11 quantitative trait loci (QTL) and 21 SNPs, were identified to be significantly associated with BW traits and 5 QTL and 5 SNPs were found associated with FE traits using MLM approach.

View Article and Find Full Text PDF

Mitochondria are key intracellular targets of hypoxia-reoxygenation (H/R) stress due to their central role in generation of ATP and reactive oxygen species (ROS). Intertidal oysters Crassostrea gigas are adapted to frequent H/R cycles and maintain aerobic function despite frequent oxygen fluctuations. To gain insight into the molecular mechanisms of H/R tolerance, we assessed changes in mitochondrial respiration and (phospho)proteome of C.

View Article and Find Full Text PDF

Adipose tissue is hypothesized to play a vital role in regulation of feed efficiency (FE; efficiency in converting energy and nutrients into tissue), of which improvement will simultaneously reduce environmental impact and feed cost per pig. The objective of the present study was to sequence the subcutaneous adipose tissue transcriptome in FE-divergent pigs (n = 16) and identify relevant biological processes underpinning observed differences in FE. We previously demonstrated that high-FE pigs were associated with lower fatness when compared to their counterparts.

View Article and Find Full Text PDF

Background: Feed efficiency (FE) is an indicator of efficiency in converting energy and nutrients from feed into a tissue that is of major environmental and economic significance. The molecular mechanisms contributing to differences in FE are not fully elucidated, therefore the objective of this study was to profile the porcine Longissimus thoracis et lumborum (LTL) muscle transcriptome, examine the product quality from pigs divergent in FE and investigate the functional networks underpinning the potential relationship between product quality and FE.

Results: RNA-Seq (n = 16) and product quality (n = 40) analysis were carried out in the LTL of pigs differing in FE status.

View Article and Find Full Text PDF

Background: Although hatching is perhaps the most abrupt and profound metabolic challenge that a chicken must undergo; there have been no attempts to functionally map the metabolic pathways induced in liver during the embryo-to-hatchling transition. Furthermore, we know very little about the metabolic and regulatory factors that regulate lipid metabolism in late embryos or newly-hatched chicks. In the present study, we examined hepatic transcriptomes of 12 embryos and 12 hatchling chicks during the peri-hatch period-or the metabolic switch from chorioallantoic to pulmonary respiration.

View Article and Find Full Text PDF

Epithelial tissues cover most of the external and internal surfaces of the body and its organs. Inevitably, these tissues serve as first line of defence against inorganic, organic, and microbial intruders. Epithelial cells are the main cell type of these tissues.

View Article and Find Full Text PDF

Considerable variation in feed efficiency (FE) has been observed in indigenous and selected meat-type chicken populations. Although this variation could be partially linked to extrinsic factors like diet, housing environment and microbiota, it further illustrates the existence of strong molecular mechanisms enabling the differential allocation of resources for various physiological processes. To further deepen the molecular basis of individual allocation capacity in male and female broilers, an RNA-seq experiment was conducted which based on a phenotyped chicken population divergent in FE.

View Article and Find Full Text PDF

Nicotine and acetylcholine cause immunosuppresion by signaling to the α7 nicotinic acetylcholine receptor (α7 nAChR) on immune cells. Neonicotinoids are nAChR agonists and widly used insecticides. We aimed to define the immunosuppressive potential of dietary exposure to the neonicotinoid imidacloprid (IMI) on the generation of innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus (PRRSV).

View Article and Find Full Text PDF

MicroRNAs are post-transcriptional regulators that play critical roles in diverse biological processes. We hypothesize that miRNAs may be involved in regulating transcriptome responses to changes in embryonic incubation temperature in chickens affecting differentiation and proliferation processes during tissue development. Therefore, we conducted comparative transcriptome profiling of miRNAs to examine altered expression in breast and hind muscle of embryos and day 35 chickens experiencing high (38.

View Article and Find Full Text PDF

Characterization of igf1 and igf2 genes during maraena whitefish (Coregonus maraena) ontogeny and the effect of temperature on embryogenesis and igf expression.

Growth Horm IGF Res

June 2018

Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany. Electronic address:

The insulin-like growth factors IGF-1 and IGF-2 play important roles in the growth, development, and metabolism of teleost fish. We isolated cDNA sequences of igf1, and igf2 genes from maraena whitefish. We quantified the mRNA and protein expressions of IGFs in different tissues of marketable juvenile maraena whitefish.

View Article and Find Full Text PDF

Transcriptome analyses of bovine muscle tissue differing in intramuscular fat (IMF) content identified agouti signaling protein (ASIP) as a promising candidate gene for fat deposition. The protein is secreted from adipocytes and may serve as a signaling molecule in cross-talk between adipocytes and muscle fibers or other cells. Known receptors for ASIP are the melanocortin receptors (e.

View Article and Find Full Text PDF

Background: In monogastric animals, phosphorus (P) homeostasis is maintained by regulating intestinal absorption, bone mobilization, and renal excretion. Since P is a non-renewable resource, a shortage is imminent due to widespread over-usage in the farming and animal husbandry industries. As a consequence, P efficiency should be improved in pig production.

View Article and Find Full Text PDF

Implication of transcriptome profiling of spermatozoa for stallion fertility.

Reprod Fertil Dev

July 2018

Institute for Genome Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhelm-Stahl-Allee 2, Germany.

Poor fertility of breeding stallions is a recognised problem in the equine industry. The aim of the present study was to detect molecular pathways using two groups of stallions that differed in pregnancy rates as well as in the proportion of normal and motile spermatozoa. RNA was isolated from spermatozoa of each stallion and microarray data were analysed to obtain a list of genes for which transcript abundance differed between the groups (P ≤0.

View Article and Find Full Text PDF

Background: A strain of Leghorn chickens (rd/rd), unable to produce a functional riboflavin-binding protein, lays riboflavin-deficient eggs, in which all embryos suddenly die at mid-incubation (days 13-15). This malady, caused by riboflavin deficiency, leads to excessive lipid accumulation in liver, impaired β-oxidation of lipid, and severe hypoglycemia prior to death. We have used high-density chicken microarrays for time-course transcriptional scans of liver in chicken embryos between days 9-15 during this riboflavin-deficiency-induced metabolic catastrophe.

View Article and Find Full Text PDF

Tryptophan metabolites are known to participate in the regulation of many cells of the immune system and are involved in various immune-mediated diseases and disorders. Kynurenic acid (KYNA) is a product of one branch of the kynurenine pathway of tryptophan metabolism. The influence of KYNA on important neurophysiological and neuropathological processes has been comprehensively documented.

View Article and Find Full Text PDF

Bovine mastitis is a disease of major economic effects on the dairy industry worldwide. Experimental in vivo infection models have been widely proven as an effective tool for the investigation of pathogen-specific host immune responses. Staphylococcus aureus (S.

View Article and Find Full Text PDF

Subacute ruminal acidosis (SARA) of dairy cattle is a widely occurring but not very overt metabolic disorder thought to impair milk composition. The enzyme stearoyl-CoA desaturase 1 (SCD1) is rate-limiting for the formation of Δ-9 unsaturated fatty acids and thus crucially involved in controlling lipid metabolism in the liver. It is known that SCD1 expression is downregulated during SARA, but the underlying molecular mechanisms are unknown.

View Article and Find Full Text PDF

Residual feed intake (RFI), the difference between actual feed intake and predicted feed requirements, is suggested to impact various aspects of meat quality. The objective of this study was to investigate the molecular mechanisms underpinning the relationship between RFI and meat quality. Technological, sensory and nutritional analysis as well as transcriptome profiling were carried out in Longissimus thoracis et lumborum muscle of pigs divergent in RFI (n=20).

View Article and Find Full Text PDF

Functional genome analysis usually is performed on the level of genotype-phenotype interaction. However, phenotypes also depend on the relations between genomes and environment. In our experimental system, we observed differential response to environmental factors defined by different conditions of husbandry in a semi-barrier unit or in a SPF (specific pathogen free) barrier unit, which resulted in partial reversal of phenotypes previously observed under semi-barrier conditions.

View Article and Find Full Text PDF