8 results match your criteria: "Institute for Energy Systems and Thermodynamics[Affiliation]"

To enhance the robustness of ship autopilot (SA) system with nonlinear dynamics, unmeasured states, and unknown steering machine fault, an observer-based H fuzzy fault-tolerant switching control for ship course tracking is proposed. Firstly, a global Takagi-Sugeno (T-S) fuzzy nonlinear ship autopilot (NSA) is developed with full consideration of ship steering characteristics. And the actual navigation data collected from a real ship are used to verify the reasonableness and feasibility of NSA model.

View Article and Find Full Text PDF

The thermochemical energy-storage material couple CuSO/[Cu(NH)]SO combines full reversibility, application in a medium temperature interval (<350 °C), and fast liberation of stored heat. During reaction with ammonia, a large change in the sulfate solid-state structure occurs, resulting in a 2.6-fold expansion of the bulk material due to NH uptake.

View Article and Find Full Text PDF

This work examines a high temperature latent heat storage system, which could find use in future concentrated solar power and other combined heat and power plants. In contrast to lab-based fully charged or totally discharged states, partial load states will be the principal operation states in real-world applications. Hence, a closer look on the partial load states and the effective power rates are worthwhile for a successful implementation of this storage type.

View Article and Find Full Text PDF

This study aims to investigate the physical and chemical characterization of six fly ash samples obtained from different municipal solid waste incinerators (MSWIs), namely grate furnaces, rotary kiln, and fluidized bed reactor, to determine their potential for CO and thermochemical energy storage (TCES). Representative samples were characterized via simultaneous thermal analysis (STA) in different atmospheres, i.e.

View Article and Find Full Text PDF

Thermochemical energy storage is considered as an auspicious method for the recycling of medium-temperature waste heat. The reaction couple Mg(OH)₂⁻MgO is intensely investigated for this purpose, suffering so far from limited cycle stability. To overcome this issue, Mg(OH)₂, MgCO₃, and MgC₂O₄·2H₂O were compared as precursor materials for MgO production.

View Article and Find Full Text PDF

A single crystalline SrTiO working electrode in a zirconia-based solid oxide electrochemical cell is illuminated by UV light at temperatures of 360-460 °C. In addition to photovoltaic effects, this leads to the build-up of a battery-type voltage up to more than 300 mV. After switching off UV light, this voltage only slowly decays.

View Article and Find Full Text PDF

New approaches in process monitoring during industrial fermentations are not only limited to classical pH, dO₂ and offgas analysis, but use different in situ and online sensors based on different physical principles to determine biomass, product quality, lysis and far more. One of the very important approaches is the in situ accessibility of viable cell concentration (VCC). This knowledge provides increased efficiency in monitoring and controlling strategies during cultivations.

View Article and Find Full Text PDF

Background: Advanced cholangiocellular carcinoma has a poor prognosis with limited therapeutic options. Nab-paclitaxel has recently been described to be beneficial in metastatic pancreatic cancer improving overall and progression free survival (PFS). The potential antitumor activity of nab-paclitaxel in cholangiocellular carcinoma is hitherto unknown.

View Article and Find Full Text PDF