14 results match your criteria: "Institute for Electrical Measurement Science and Fundamental Electrical Engineering[Affiliation]"

Self-assembled magnetic nanoparticles offer next-generation materials that allow harnessing of their physicochemical properties for many applications. However, how three-dimensional nanoassemblies of magnetic nanoparticles can be synthesized in one-pot synthesis without excessive postsynthesis processes is still a bottleneck. Here, we propose a panel of small organic molecules that glue nanoparticle crystallites during the growth of particles to form large nanoassembled nanoparticles (NANs).

View Article and Find Full Text PDF

Polymerase chain reaction (PCR) requires thermal cycling and enzymatic reactions for sequence amplification, hampering their applications in point-of-care (POC) settings. Magnetic bioassays based on magnetic particle spectroscopy (MPS) and magnetic nanoparticles (MNPs) are isothermal, wash-free, and can be quantitative. Realizing them amplification- and enzyme-free on a benchtop device, they will become irreplaceable for POC applications.

View Article and Find Full Text PDF

Cooperative dynamics of DNA-grafted magnetic nanoparticles optimize magnetic biosensing and coupling to DNA origami.

Nanoscale

April 2024

Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.

Magnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density.

View Article and Find Full Text PDF

Immunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions.

View Article and Find Full Text PDF

Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic stresses the need for widely available diagnostic tests for the presence of SARS-CoV-2 in individuals. Due to the limited availability of vaccines, diagnostic assays which are cheap, easy-to-use at the point-of-need, reliable and fast, are currently the only way to control the pandemic situation. Here we present a diagnostic assay for the detection of pathogen-specific nucleic acids based on changes of the magnetic response of magnetic nanoparticles: The target-mediated hybridization of modified nanoparticles leads to an increase in the hydrodynamic radius.

View Article and Find Full Text PDF

Equiseti herba has been traditionally indicated in bacterial diseases of the efferent urinary tract or bad healing wounds in many regions worldwide. Most of the plant material used for medical purposes comes from collections of wild growing plants. The European Pharmacopoeia requires that Equiseti herba should consist of a minimum of 95% and a maximum of 5% foreign ingredients.

View Article and Find Full Text PDF

The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global medical systems and economies and rules our daily living life. Controlling the outbreak of SARS-CoV-2 has become one of the most important and urgent strategies throughout the whole world. As of October 2020, there have not yet been any medicines or therapies to be effective against SARS-CoV-2.

View Article and Find Full Text PDF

Static magnetic response of multicore particles.

Phys Rev E

September 2020

Institute for Electrical Measurement Science and Fundamental Electrical Engineering, and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, D-38106 Braunschweig, Germany.

We present theoretical calculations of the characteristics of the static magnetic response of multicore magnetic nanoparticles. These particles contain a considerable number (∼10^{2}) of single-domain magnetic nanocrystallites, which are modeled as uniformly magnetized balls with uniaxial magnetocrystalline anisotropy, the energetic barrier of which is comparable with the thermal energy. Thus, we model a multicore magnetic nanoparticle as an ensemble of superparamagnetic nanoparticles, the position and the easy magnetization axis of which are fixed but randomly distributed.

View Article and Find Full Text PDF

Magnetic hyperthermia is a technique that describes the heating of material through an external magnetic field. Classic hyperthermia is a medical condition where the human body overheats, being usually triggered by a heat stroke, which can lead to severe damage to organs and tissue due to the denaturation of cells. In modern medicine, hyperthermia can be deliberately induced to specified parts of the body to destroy malignant cells.

View Article and Find Full Text PDF

Magnetic nanoparticles are critical to a broad range of applications from medical diagnostics and therapeutics to biotechnological processes and single-molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25 °C tunes the size of ferrimagnetic ZnFeO nanocubes from 25 to 100 nm, respectively.

View Article and Find Full Text PDF

In-Field Orientation and Dynamics of Ferrofluids Studied by Mössbauer Spectroscopy.

ACS Appl Mater Interfaces

January 2019

Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE) , University of Duisburg-Essen, Lotharstr. 1 , 47057 Duisburg , Germany.

By studying the response behavior of ferrofluids of 6-22 nm maghemite nanoparticles in glycerol solution exposed to external magnetic fields, we demonstrate the ability of Mössbauer spectroscopy to access a variety of particle dynamics and static magnetic particle characteristics at the same time, offering an extensive characterization of ferrofluids for in-field applications; field-dependent particle alignment and particle mobility in terms of Brownian motion have been extracted simultaneously from a series of Mössbauer spectra for single-core particles as well as for particle agglomerates. Additionally, information on Néel superspin relaxation and surface spin frustration could be directly inferred from this analysis. Parameters regarding Brownian particle dynamics, as well as Néel-type relaxation behavior, obtained via Mössbauer spectroscopy, have been verified by complementary AC-susceptometry experiments, modulating the AC-field amplitude, and using an extended frequency range of 10 to 10 Hz, while field-dependent particle alignment has been cross-checked via magnetometry.

View Article and Find Full Text PDF

This paper quantitatively investigates the spatial and temperature resolutions of magnetic nanoparticle (MNP) temperature imaging with a multiline phantom filled with MNPs. The multiline phantom in total consists of seven lines with different distances between two adjacent lines. A scanning magnetic particle spectrometer is used to measure the spatial distributions of the MNP harmonics for MNP concentration and temperature imaging, whereas an iterative deconvolution method is used to improve the spatial resolution.

View Article and Find Full Text PDF

Herein, by studying a stepwise phase transformation of 23 nm FeO-FeO core-shell nanocubes into FeO, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-FeO nanocubes from having stoichiometric phase compositions into Fe-deficient FeO phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO subdomains as well as structural defects.

View Article and Find Full Text PDF