774 results match your criteria: "Institute for Complex Systems[Affiliation]"

The interplay of soft responsive particles, such as microgels, with nanoparticles (NPs) yields highly versatile complexes that show great potential for applications, ranging from plasmonic sensing to catalysis and drug delivery. However, the microgel-NP assembly process has not been investigated so far at the microscopic level, thus hindering the possibility of designing such hybrid systems a priori. In this work, we combine state-of-the-art numerical simulations with experiments to elucidate the fundamental mechanisms taking place when microgel-NP assembly is controlled by electrostatic interactions and the associated effects on the structure of the resulting complexes.

View Article and Find Full Text PDF

Background: The association of fitness with cancer risk is not clear.

Methods: We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal fitness test in 2009-12 (N = 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios (ORs) were estimated using the inverse-variance weighted method.

View Article and Find Full Text PDF

The analysis of systemic risk often revolves around examining various measures utilized by practitioners and policymakers. These measures typically focus on assessing the extent to which external events can impact a financial system, without delving into the nature of the initial shock. In contrast, our approach takes a symmetrical standpoint and introduces a set of measures centered on the quantity of external shock that the system can absorb before experiencing deterioration.

View Article and Find Full Text PDF
Article Synopsis
  • Boron-containing compounds like 4-borono-phenylalanine (BPA) are used in Boron Neutron Capture Therapy (BNCT) to target and destroy cancer cells via neutron irradiation, which triggers nuclear reactions in boron-rich materials.* -
  • This study models the thermal neutron cross-section of BPA to examine how boron absorption competes with hydrogen scattering, aiming to optimize BNCT treatment by reducing the latter's effect.* -
  • The findings indicate that fluorinated versions of BPA enhance neutron capture efficiency, offering a potential improvement for BNCT, while also facilitating monitoring and pharmacokinetic studies with fluorine-based imaging techniques.*
View Article and Find Full Text PDF

The growth in AI is rapidly transforming the structure of economic production. However, very little is known about how within-AI specialization may relate to broad-based economic diversification. This paper provides a data-driven framework to integrate the interconnection between AI-based specialization with goods and services export specialization to help design future comparative advantage based on the inherent capabilities of nations.

View Article and Find Full Text PDF

Higher-order interactions improve our capability to model real-world complex systems ranging from physics and neuroscience to economics and social sciences. There is great interest nowadays in understanding the contribution of higher-order terms to the collective behavior of the network. In this work, we investigate the stability of complete synchronization of complex networks with higher-order structures.

View Article and Find Full Text PDF

Long-Focusing Device for Broadband THz Applications Based on a Tunable Reflective Biprism.

Micromachines (Basel)

October 2023

Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, Rio de Janeiro 22451-900, Brazil.

THz radiation has assumed great importance thanks to the efforts in the development of technological tools used in this versatile band of the electromagnetic spectrum. Here, we propose a reflective biprism device with wavelength-independent long-focusing performances in the THz band by exploiting the high thermo-mechanical deformation of the elastomer polydimethylsiloxane (PDMS). This deformation allows for achieving significant optical path modulations in the THz band and effective focusing.

View Article and Find Full Text PDF

In Vivo Ultrafast Doppler Imaging Combined with Confocal Microscopy and Behavioral Approaches to Gain Insight into the Central Expression of Peripheral Neuropathy in Trembler-J Mice.

Biology (Basel)

October 2023

Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.

The main human hereditary peripheral neuropathy (Charcot-Marie-Tooth, CMT), manifests in progressive sensory and motor deficits. Mutations in the compact myelin protein gene pmp22 cause more than 50% of all CMTs. CMT1E is a subtype of CMT1 myelinopathy carrying micro-mutations in pmp22.

View Article and Find Full Text PDF

Phase transitions on a multiplex of swarmalators.

Phys Rev E

September 2023

São Paulo State University (UNESP), Instituto de Física Teórica, 01140-070 São Paulo, Brazil and Epistemic, Gomez & Gomez Ltda. ME, 05305-031 São Paulo, Brazil.

Dynamics of bidirectionally coupled swarmalators subject to attractive and repulsive couplings is analyzed. The probability of two elements in different layers being connected strongly depends on a defined vision range r_{c} which appears to lead both layers in different patterns while varying its values. Particularly, the interlayer static sync π has been found and its stability is proven.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common cause of dementia characterized by neurodegenerative dysregulations, cognitive impairments, and neuropsychiatric symptoms. Physical exercise (PE) has emerged as a powerful tool for reducing chronic inflammation, improving overall health, and preventing cognitive decline. The connection between the immune system, gut microbiota (GM), and neuroinflammation highlights the role of the gut-brain axis in maintaining brain health and preventing neurodegenerative diseases.

View Article and Find Full Text PDF

Epidemiological data and research highlight increased neuropathy and chronic pain prevalence among females, spanning metabolic and normometabolic contexts, including murine models. Prior findings demonstrated diverse immune and neuroimmune responses between genders in neuropathic pain (NeP), alongside distinct protein expression in sciatic nerves. This study unveils adipose tissue's (AT) role in sex-specific NeP responses after peripheral nerve injury.

View Article and Find Full Text PDF

Control of stochastic systems is a challenging open problem in statistical physics, with a wealth of potential applications from biology to granulates. Unlike most cases investigated so far, we aim here at controlling a genuinely out-of-equilibrium system, the two dimensional active Brownian particles model in a harmonic potential, a paradigm for the study of self-propelled bacteria. We search for protocols for the driving parameters (stiffness of the potential and activity of the particles) bringing the system from an initial passivelike steady state to a final activelike one, within a chosen time interval.

View Article and Find Full Text PDF

The direct disease burden of COVID-19 in Belgium in 2020 and 2021.

BMC Public Health

September 2023

Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.

Background: Burden of disease estimates have become important population health metrics over the past decade to measure losses in health. In Belgium, the disease burden caused by COVID-19 has not yet been estimated, although COVID-19 has emerged as one of the most important diseases. Therefore, the current study aims to estimate the direct COVID-19 burden in Belgium, observed despite policy interventions, during 2020 and 2021, and compare it to the burden from other causes.

View Article and Find Full Text PDF

The characterization of the distance from equilibrium is a debated problem in particular in the treatment of experimental signals. If the signal is a one-dimensional time series, such a goal becomes challenging. A paradigmatic example is the angular diffusion of a rotator immersed in a vibro-fluidized granular gas.

View Article and Find Full Text PDF

Neuronal interactions give rise to complex dynamics in cortical networks, often described in terms of the diversity of activity patterns observed in a neural signal. Interestingly, the complexity of spontaneous electroencephalographic signals decreases during slow-wave sleep (SWS); however, the underlying neural mechanisms remain elusive. Here, we analyse in-vivo recordings from neocortical and hippocampal neuronal populations in rats and show that the complexity decrease is due to the emergence of synchronous neuronal DOWN states.

View Article and Find Full Text PDF

Fetal MRI: what's new? A short review.

Eur Radiol Exp

August 2023

Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy.

Fetal magnetic resonance imaging (fetal MRI) is usually performed as a second-level examination following routine ultrasound examination, generally exploiting morphological and diffusion MRI sequences. The objective of this review is to describe the novelties and new applications of fetal MRI, focusing on three main aspects: the new sequences with their applications, the transition from 1.5-T to 3-T magnetic field, and the new applications of artificial intelligence software.

View Article and Find Full Text PDF

Stability and Bautin bifurcation of four-wheel-steering vehicle system with driver steering control.

Chaos

August 2023

Institute for Complex Systems and Mathematical Biology King's College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom.

In this paper, the stability and Bautin bifurcation of a four-wheel-steering (4WS) vehicle system, by considering driver steering control, are investigated. By using the central manifold theory and projection method, the first and second Lyapunov coefficients are calculated to predict the type of Hopf bifurcation of the vehicle system. The topological structure of Bautin bifurcation, a degenerate Hopf bifurcation of the 4WS vehicle system, is presented in parameter space, and it reveals the dynamics of the vehicle system of different choices of control parameters.

View Article and Find Full Text PDF

The study of the interaction between lipid membranes and amyloidogenic peptides is a turning point for understanding the processes involving the cytotoxicity of peptides involved in neurodegenerative diseases. In this work, we perform an experimental study of model membrane-lysozyme interaction to understand how the formation of amyloid fibrils can be affected by the presence of polar and zwitterionic phospholipid molecules (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine [POPC] and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol [POPG]). The study was conducted above and below the critical micellar concentration (CMC) using dynamic light scattering (DLS), atomic force microscopy (AFM), UV-Vis spectrophotometry, and the quartz crystal microbalance (QCM).

View Article and Find Full Text PDF

Exploring the 3D Conformation of Hard-Core Soft-Shell Particles Adsorbed at a Fluid Interface.

Adv Sci (Weinh)

October 2023

Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland.

The encapsulation of a rigid core within a soft polymeric shell allows obtaining composite colloidal particles that retain functional properties, e.g., optical or mechanical.

View Article and Find Full Text PDF

Extreme waves are intense and unexpected wavepackets ubiquitous in complex systems. In optics, these rogue waves are promising as robust and noise-resistant beams for probing and manipulating the underlying material. Localizing large optical power is crucial especially in biomedical systems, where, however, extremely intense beams have not yet been observed.

View Article and Find Full Text PDF

The relation between spontaneous and stimulated brain activity is a fundamental question in neuroscience which has received wide attention in experimental studies. Recently, it has been suggested that the evoked response to external stimuli can be predicted from temporal correlations of spontaneous activity. Previous theoretical results, confirmed by the comparison with magnetoencephalography data for human brains, were obtained for the Wilson-Cowan model in the condition of balance of excitation and inhibition, a signature of a healthy brain.

View Article and Find Full Text PDF

Spatiotemporal Landscape for the Sophisticated Transformation of Protein Assemblies Defined by Multiple Supramolecular Interactions.

ACS Nano

August 2023

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Precise protein assemblies not only constitute a series of living machineries but also provide an advanced class of biomaterials. Previously, we developed the inducing ligand strategy to generate various fixed protein assemblies, without the formation of noncovalent interactions between proteins. Here, we demonstrated that controlling the symmetry and number of supramolecular interactions introduced on protein surfaces could direct the formation of unspecific interactions between proteins and induce various nanoscale assemblies, including coiling nanowires, nanotubes, and nanosheets, without manipulation of the protein's native surfaces.

View Article and Find Full Text PDF

Active fluids, like all other fluids, exert mechanical pressure on confining walls. Unlike equilibrium, this pressure is generally not a function of the fluid state in the bulk and displays some peculiar properties. For example, when activity is not uniform, fluid regions with different activity may exert different pressures on the container walls but they can coexist side by side in mechanical equilibrium.

View Article and Find Full Text PDF

Measuring the counterion cloud of soft microgels using SANS with contrast variation.

Nat Commun

July 2023

Department of Condensed Matter Physics, University of Barcelona, Carrer de Martí i Franqués 1, Barcelona, 08028, Spain.

The behavior of microgels and other soft, compressible colloids depends on particle concentration in ways that are absent in their hard-particulate counterparts. For instance, poly-N-isopropylacrylamide (pNIPAM) microgels can spontaneously deswell and reduce suspension polydispersity when concentrated enough. Despite the pNIPAM network in these microgels is neutral, the key to understanding this distinct behavior relies on the existence of peripheric charged groups, responsible for providing colloidal stability when deswollen, and the associated counterion cloud.

View Article and Find Full Text PDF