2,650 results match your criteria: "Institute for Chemical Research[Affiliation]"

The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.

View Article and Find Full Text PDF

Nanoclusters are nanometer-sized molecular compounds characterized by significant metal-metal bonding and low average oxidation states, and they exhibit unique properties distinct from those of small metal complexes or nanoparticles. Unlike noble metals stable in metallic forms, the synthesis of nanometer-sized iron clusters has been precluded by the relatively weak iron-iron bonds and the high reactivity of low oxidation state iron, despite the extensive history of molecular iron compounds. Here, we report the synthesis and characterization of a cationic 55-atom iron cluster with a 1.

View Article and Find Full Text PDF

Proton-coupled electron transfer (PCET) is a crucial chemical process involving the simultaneous or sequential transfer of protons and electrons, playing a vital role in biological processes and energy conversion technologies. This study investigates the use of an organic photoredox catalyst to facilitate a unimolecular PCET process for the generation of alkyl radicals from benzylic alcohols, with a particular focus on alcohols containing electron-rich arene units. By employing a benzophenone derivative as the catalyst, the reaction proceeds efficiently under photoirradiation, achieving significant yields without the need for a Brønsted base.

View Article and Find Full Text PDF

The development of efficient electron-collecting monolayer materials is desired to lower manufacturing costs and improve the performance of regular (negative-intrinsic-positive, n-i-p) type perovskite solar cells (PSCs). Here, we designed and synthesized four electron-collecting monolayer materials based on thiazolidinone skeletons, with different lowest-unoccupied molecular orbital (LUMO) levels (rhodanine or thiazolidinedione) and different anchoring groups to the transparent electrode (phosphonic acid or carboxylic acid). These molecules, when adsorbed on indium tin oxide (ITO) substrates, lower the work function of ITO, decreasing the energy barrier for electron extraction at the ITO/perovskite interface and improving the device performance.

View Article and Find Full Text PDF

4'-Selective alkylation of nucleosides has been recognized as one of the ideal and straightforward approaches to chemically modified nucleosides, but such a transformation has been scarce and less explored. In this Letter, we combine a visible-light-mediated photoredox catalysis and hydrogen atom transfer (HAT) auxiliary to achieve β-C(sp)-H alkylation of alcohol on tetrahydrofurfuryl alcohol scaffolds and exploit it for 4'-selective alkylation of nucleosides. The reaction involves an intramolecular 1,5-HAT process and stereocontrolled Giese addition of the resultant radicals.

View Article and Find Full Text PDF

Covalent Plant Natural Product that Potentiates Antitumor Immunity.

J Am Chem Soc

January 2025

Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan.

Despite the unprecedented therapeutic potential of immune checkpoint antibody therapies, their efficacy is limited partly by the dysfunction of T cells within the cancer microenvironment. Combination therapies with small molecules have also been explored, but their clinical implementation has been met with significant challenges. To search for antitumor immunity activators, the present study developed a cell-based system that emulates cancer-attenuated T cells.

View Article and Find Full Text PDF

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

An overcrowded ethylene composed of electron-donating anion, naphthoxide, and electron-accepting cation, acridinium, has been synthesized. It is in equilibrium between a folded conformer having a smaller permanent dipole moment with visible light absorption and a twisted conformer having a larger permanent dipole moment with NIR light absorption. The overcrowded ethylene shows multiple NIR chromisms, such as solvatochromism, thermochromism, mechanochromism, vapochromism, halochromism, and amphoteric electrochromisms, which are caused by the conformational change between folded and twisted conformers or by controlling the energy difference between the HOMO of the donor moiety and the LUMO of the acceptor moiety.

View Article and Find Full Text PDF

We report herein the synthesis of an unprecedented isomer of perylene, dicyclohepta[cd,fg]-as-indacene bearing two phenyl groups (1-Ph) by the nickel-mediated intramolecular homocoupling of a 4,4'-biazulene derivative (2). The X-ray crystallographic analysis and theoretical calculations revealed that 1-Ph adopts a unique helically twisted geometry although the local aromaticity of azulene moieties was preserved. The double covalent linkage of the two azulene skeletons imparts significant orbital interaction, which affords near-infrared (NIR) absorption (up to 1720 nm) and remarkable redox behaviors despite its closed-shell electronic structure.

View Article and Find Full Text PDF

Precise control of assembled structures of quantum dots (QDs) is crucial for realizing the desired photophysical properties, but this remains challenging. Especially, the one-dimensional (1D) control is rare due to the nearly isotropic nature of QDs. Herein, we propose a novel strategy for controlling the 1D-arrangement range of cubic perovskite QDs in solution based on the morphological modification of a supramolecular polymer (SP) template.

View Article and Find Full Text PDF

Although fullerene bisadducts are promising electron-transporting materials for tin halide perovskite solar cells, they are generally synthesized as a mixture of isomeric products that require a complicated separation process. Here, we introduce a phenylene-bridged bis(pyrrolidino)fullerene, Bis-PC, which forms only a single isomer due to geometrical restriction. When used in a tin perovskite solar cell with a PEAFASnI (PEA: phenylethylammonium and FA: formamidinium) light absorption layer, the resulting open-circuit voltage ( ) was 0.

View Article and Find Full Text PDF

The spin pumping effect in antiferromagnets, which ultimately converts THz waves into a spin current, is the key physical mechanism leading to an essential function which harnesses the THz technology and spintronics. Here, we report thorough experimental investigations of the spin current induced by the antiferromagnetic spin pumping effect in epitaxial α-Fe_{2}O_{3} thin films having two distinct dynamic modes and unambiguously show that both the inter- and intrasublattice spin mixing conductance are equally substantial. Our experimental insight is an important advance for understanding the physics of transduction between the spin current and the staggered magnetization dynamics at THz frequency.

View Article and Find Full Text PDF

The development of a cytosolic delivery strategy for biopharmaceuticals is one of the central issues in drug development. Knowledge of the mechanisms underlying these processes may also pave the way for the discovery of novel delivery systems. L17E is an attenuated cationic amphiphilic lytic (ACAL) peptide developed by our research group that shows promise for cytosolic antibody delivery.

View Article and Find Full Text PDF

Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting.

Nat Commun

January 2025

Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell.

View Article and Find Full Text PDF

Electrochemically inserting and extracting hydrogen into and from solids are promising ways to explore materials' phases and properties. However, it is still challenging to identify the structural factors that promote hydrogen insertion and extraction and to develop materials whose functional properties can be largely modulated by inserting and extracting hydrogen through solid-state reactions at room temperature. In this study, guided by theoretical calculations on the energies of oxygen reduction and hydrogen insertion reactions with oxygen-deficient perovskite oxides, we demonstrated that the oxygen vacancy ordering in Sr(FeCo)O (SFCO) epitaxial films can be stabilized by increasing the Co content (x ≥ 0.

View Article and Find Full Text PDF
Article Synopsis
  • Lysophosphatidic acid acyltransferase (LPAAT) is an important enzyme in phospholipid biosynthesis, converting lysophosphatidic acid to phosphatidic acid, with two types identified in E. coli: EcPlsC and EcYihG.
  • The study established a method to purify both EcPlsC and EcYihG in their active forms, revealing that EcPlsC prefers unsaturated fatty acyl-CoAs at optimal conditions of pH 8.0 and 37 °C, while EcYihG favors saturated acyl-CoAs at pH 7.5 and 30 °C.
  • Mutational analysis using
View Article and Find Full Text PDF

Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules.

View Article and Find Full Text PDF

Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown.

View Article and Find Full Text PDF

Dithienoarsinines: stable and planar π-extended arsabenzenes.

Chem Sci

January 2025

Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku Kyoto 606-0962 Japan

Stable planar dithienoarsinines were synthesized and structurally characterized. These compounds exhibit monomeric structures in the solution and solid states, avoiding dimerization, even in the absence of steric protection. They exhibited high global aromaticity with 14 or 22π-electron systems.

View Article and Find Full Text PDF

Inorganic metal halides (IMHs) often suffer from severe fluorescence thermal quenching, limiting their application at elevated temperatures. Therefore, the exploration of IMHs exhibiting antithermal quenching (ATQ) behavior is of great importance. In this study, we developed a green synthetic route using a solvent evaporation method to successfully synthesize the 0D IMHs CsInCl(HO).

View Article and Find Full Text PDF

The band gap energy of halide perovskite semiconductors is manipulated by controlling the halide composition, and mixed halide perovskites are receiving much attention as top cell materials for tandem solar cells. To understand dynamic aspects of photoinduced halide segregation in mixed-halide perovskite films, we use a hyperspectral imaging technique. We reveal the space- and time-resolved photoluminescence (PL) spectra of CsFAPbIBr perovskite films during prolonged light illumination.

View Article and Find Full Text PDF

NMR investigations of glycan conformation, dynamics, and interactions.

Prog Nucl Magn Reson Spectrosc

December 2024

Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain. Electronic address:

Article Synopsis
  • * NMR (Nuclear Magnetic Resonance) is essential for understanding glycan properties due to their flexible nature, allowing researchers to analyze their geometry, dynamics, and internal motions.
  • * The review highlights the use of NMR to explore various natural glycans and their synthetic analogues, focusing on how these techniques can help understand glycan interactions with proteins, enhancing our knowledge for therapeutic applications.
View Article and Find Full Text PDF

The C fullerene cage can encapsulate a small molecule like water and provides room to leave the encapsulated component rather isolated, but the true nature of the intracomplex interactions should be further elucidated for better understanding and utility of this series of complexes. Here, an analysis toward this goal is conducted for HO@C by infrared spectral measurements and theoretical calculations. It is shown that the response of the π electrons of the C cage upon encapsulating a water molecule is single-sided and delocalized in that the electron density is partially transferred from the - side to the + side of the cage (when the axis is taken along the water dipole) but almost only inside the cage, explaining the significant reduction of the dipole moment and the infrared intensities.

View Article and Find Full Text PDF

Background And Aims: Alcohol-associated liver disease (ALD) is a leading cause of liver-related mortality worldwide, with limited treatment options beyond abstinence and liver transplantation. Chronic alcohol consumption has been linked to magnesium (Mg 2+ ) deficiency, which can influence liver disease progression. The mechanisms underlying Mg 2+ homeostasis dysregulation in ALD remain elusive.

View Article and Find Full Text PDF

On the Compressive Power of Autoencoders With Linear and ReLU Activation Functions.

Neural Comput

December 2024

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan

Article Synopsis
  • This letter focuses on analyzing the depth and width of autoencoders that utilize rectified linear unit (ReLU) activation functions, comparing them to previous studies using linear threshold activation functions.
  • Autoencoders consist of an encoder that compresses input data and a decoder that reconstructs it, and the research shows that similar theoretical findings apply to both types of activation functions when dealing with real input/output vectors.
  • The study also reveals that while it is feasible to compress input vectors to one-dimensional vectors with ReLU, the efficiency of linear activation functions is significantly lower than that of ReLU-based autoencoders.
View Article and Find Full Text PDF