789,680 results match your criteria: "Institute for Chemical & Bioengineering[Affiliation]"

SUMMARY (the "pneumococcus") is a significant human pathogen. The key determinant of pneumococcal fitness and virulence is its ability to produce a protective polysaccharide (PS) capsule, and anti-capsule antibodies mediate serotype-specific opsonophagocytic killing of bacteria. Notably, immunization with pneumococcal conjugate vaccines (PCVs) has effectively reduced the burden of disease caused by serotypes included in vaccines but has also spurred a relative upsurge in the prevalence of non-vaccine serotypes.

View Article and Find Full Text PDF

Atherosclerosis is a major cause of morbidity and mortality worldwide; in Israel, ischemic heart disease is the second leading cause of death for both genders aged 45 and above. Atherosclerosis involves stiffening of the arteries due to the accumulation of lipids and oxidized lipids on the blood vessel walls, triggering the development of artery plaque. Coronary artery disease (CAD) is the most common manifestation of atherosclerosis.

View Article and Find Full Text PDF

Rhodanine Substitution of Asymmetric Nonfullerene Acceptors for High-Performance Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.

Asymmetric substitution is acknowledged as a straightforward yet potent approach for the optimization of small molecule acceptors (SMAs), thereby enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this work, we have successfully engineered and synthesized a novel asymmetric SMA, designated as Y6-R, which features a rhodanine-terminated inner side-chain. In devices with PM6 as the polymer donor, the asymmetric Y6-R demonstrated an impressive PCE of 18.

View Article and Find Full Text PDF

As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.

View Article and Find Full Text PDF

The organic semiconductor Y6 has been extensively used as an acceptor in organic photovoltaic devices, yielding high efficiencies. Its unique properties include a high refractive index, intrinsic exciton dissociation, and barrierless charge generation in bulk heterojunctions. However, the direct impact of the crystal packing morphology on the photophysics of Y6 has remained elusive, hindering further development of heterojunction and homojunction devices.

View Article and Find Full Text PDF

Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene , which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes.

View Article and Find Full Text PDF

We have developed efficacious routes toward the selective synthesis of two classes of compounds such as C-3 amino-methylated indoles and 4-indol-3-yl-methylanilines from the same precursors, namely, indoles and 1,3,5-triazinanes. It is reported that the controlled cleavage of 1,3,5-triazinanes can be effected by heat for the generation of aryl imine motifs, and we observed that the presence of Lewis acid influences the course of these transformations toward different products. The reaction toward indol-3-yl-methylanilines proceeds via a nucleophilic attack of indole to the aryl imine generated from the 1,3,5-triazinanes to form an amino-methylated product which undergoes a Lewis acid mediated Hofmann-Martius-type rearrangement.

View Article and Find Full Text PDF

Correction: Total syntheses of Kavaratamide A and 5--Kavaratamide A.

Org Biomol Chem

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China.

Correction for 'Total syntheses of Kavaratamide A and 5--Kavaratamide A' by Tieshun Ren , , 2025, https://doi.org/10.1039/d4ob01409j.

View Article and Find Full Text PDF

Cell-Free Systems to Mimic and Expand Metabolism.

ACS Synth Biol

January 2025

Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.

Cell-free synthetic biology incorporates purified components and/or crude cell extracts to carry out metabolic and genetic programs. While protein synthesis has historically been the primary focus, more metabolism researchers are now turning toward cell-free systems either to prototype pathways for cellular implementation or to design new-to-nature reaction networks that incorporate environmentally relevant substrates or new energy sources. The ability to design, build, and test enzyme combinations has accelerated efforts to understand metabolic bottlenecks and engineer high-yielding pathways.

View Article and Find Full Text PDF

Mitochondria-localized dinuclear iridium(III) complexes for two-photon photodynamic therapy.

Dalton Trans

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

Photodynamic therapy (PDT), as a non-invasive cancer treatment, offers significant advantages including high temporal-spatial selectivity, minimal surgical intervention, and low toxicity, thereby garnering considerable research interest from across the world. In this study, we have developed a series of dinuclear cyclometalated Ir(III) complexes as potential two-photon photodynamic anticancer agents. These Ir(III) complexes demonstrate significant two-photon absorption (2PA) cross-sections ( = 66-166 GM) and specifically target mitochondria.

View Article and Find Full Text PDF

Identical Fe-N Sites with Different Reactivity: Elucidating the Effect of Support Curvature.

ACS Appl Mater Interfaces

January 2025

CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic.

Detailed atomic-scale understanding is a crucial prerequisite for rational design of next-generation single-atom catalysts (SACs). However, the sub-ångström precision needed for systematic studies is challenging to achieve on common SACs. Here, we present a two-dimensional (2D) metal-organic system featuring Fe-N single-atom sites, where the metal-organic structure is modulated by 0.

View Article and Find Full Text PDF

A phytocytokine and its derived peptides in the frass of an insect elicit rice defenses.

J Integr Plant Biol

January 2025

State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.

Upon recognizing elicitors derived from herbivores, many plants activate specific defenses. Most of the elicitors identified thus far are from the oral secretions and egg-laying fluids of herbivores; in contrast, herbivore fecal excreta have been sparsely studied in this context. In this study, we identified elicitors in the frass of the striped stem borer (SSB; Chilo suppressalis) larvae using a combination of molecular and chemical analyses, bioactivity tests and insect performance bioassays.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Background: Increasing the diversity of lead compounds has been shown to enhance the efficacy of diamide insecticides. Fifty novel compounds were precisely designed and synthesized utilizing fragment-based assembly and virtual screening coupling.

Results: The median lethal concentration (LC) values of compounds X-30 and X-40 against Mythimna separata were 0.

View Article and Find Full Text PDF

Background: Research into oxidative stress, cancer, and natural products revealed promising avenues for therapeutic intervention. Natural products are considered potent pharmaceuticals in combating oxidative stress and its relationship with cancer.

Methods: This study was carried out to evaluate the chemical profile and antioxidant activities using DPPH, ABTS, Phenanthroline, Cupric, Phosphomolybdenum, FRAP, Hydroxyl, Iron chelation in vitro assays, and anticancer properties by MTT method of Cistus creticus extracts.

View Article and Find Full Text PDF

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

Adapting biological systems for nanoparticle synthesis opens an orthogonal Green direction in nanoscience by reducing the reliance on harsh chemicals and energy-intensive procedures. This study addresses the challenge of efficient catalyst preparation for organic synthesis, focusing on the rapid formation of palladium (Pd) nanoparticles using bacterial cells as a renewable and eco-friendly support. The preparation of catalytically active nanoparticles on the bacterium VKM B-3302 represents a more suitable approach to increase the reaction efficiency due to its resistance to metal salts.

View Article and Find Full Text PDF

Transient Triplet Metallopnictinidenes M-Pn (M = Pd, Pt; Pn = P, As, Sb): Characterization and Dimerization.

J Am Chem Soc

January 2025

Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstr 4, 37077 Göttingen, Germany.

Nitrenes (R-N) have been subject to a large body of experimental and theoretical studies. The fundamental reactivity of this important class of transient intermediates has been attributed to their electronic structures, particularly the accessibility of triplet vs singlet states. In contrast, electronic structure trends along the heavier pnictinidene analogues (R-Pn; Pn = P-Bi) are much less systematically explored.

View Article and Find Full Text PDF

In this study, we synthesized 12 monofunctional tridentate ONS-donor salicylaldimine ligand ()-based Ru(II) complexes with general formula [(Ru()(-cymene)]·Cl (-), characterized by H NMR, C NMR, UV, FT-IR spectroscopy, HR-ESI mass spectrometry, and single-crystal X-ray analysis showing ligand's orientation around the Ru(II) center. All 12 of these 12 complexes were tested for their anticancer activities in multiple cancer cells. The superior antitumor efficacy of , , and was demonstrated by reduced mitochondrial membrane potential, impaired proliferative capacity, and disrupted redox homeostasis, along with enhanced apoptosis through caspase-3 activation and downregulation of Bcl-2 expression.

View Article and Find Full Text PDF

I-Catalyzed benzylation of NH-sulfoximines with diarylmethanes and alkylarenes.

Org Biomol Chem

January 2025

College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.

A practical transition metal-free approach for the selective benzylation of NH-sulfoximines has been disclosed by using simple elemental iodine as the catalyst and -butyl hydroperoxide (TBHP) as the terminal oxidant. Comparing with known methods for the construction of -benzylated sulfoximines, our protocol shows broad substrate scope with respect to both diarylmethanes and alkylarenes, and can be conducted in air with good functional group tolerance.

View Article and Find Full Text PDF

Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain.

View Article and Find Full Text PDF

Introduction: Vitex L. is a large genus of tropical and subtropical trees used in medicine of many nations. Some species are used in gynecology due to flavonoids, iridoids, and diterpenes.

View Article and Find Full Text PDF

Agonists of insect hormones, namely molting hormone (MH) and juvenile hormone (JH), disrupt the normal growth of insects and can be employed as insecticides that are harmless to vertebrates. In this study, a series of experiments and computational analyses were conducted to rationally design novel insect hormone agonists. Syntheses and quantitative structure-activity relationship (QSAR) analyses of two MH agonist chemotypes, imidazothiadiazoles and tetrahydroquinolines, revealed that the structural factors important for the ligand-receptor interactions are significantly different between these chemotypes.

View Article and Find Full Text PDF

In recent years, the stable supply of natural rubber has been threatened by a new leaf fall disease (LFD) caused by filamentous fungi. We screened pesticides to control the growth of sp. and sp.

View Article and Find Full Text PDF