35 results match your criteria: "Institute for Cardiovascular Physiology and Pathophysiology[Affiliation]"

Neural control of tumor immunity.

FEBS J

November 2024

Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.

Communication between the nervous system and the immune system has evolved to optimally respond to potentially dangerous stimuli both from within and outside the body. Tumors pose a severe threat to an organism and current therapies are insufficient for tumor regression in the majority of cases. Studies show that tumors are innervated by peripheral nerves from the sensory, parasympathetic and sympathetic nervous systems.

View Article and Find Full Text PDF

Antibodies and complement are key drivers of thrombosis.

Immunity

September 2024

Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.

Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown.

View Article and Find Full Text PDF

Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans.

View Article and Find Full Text PDF

Circadian tumor infiltration and function of CD8 T cells dictate immunotherapy efficacy.

Cell

May 2024

Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), Geneva 1211, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland; Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Planegg-Martinsried 82152, Germany. Electronic address:

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8 T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day.

View Article and Find Full Text PDF

Maternal rhythms suppress neonatal inflammation.

Nat Metab

May 2024

Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center (BMC), Ludwig Maximilians Universität, Munich, Germany.

View Article and Find Full Text PDF

The timing of life on Earth is remarkable: between individuals of the same species, a highly similar temporal pattern is observed, with shared periods of activity and inactivity each day. At the individual level, this means that over the course of a single day, a person alternates between two states. They are either upright, active, and communicative or they lie down in a state of (un)consciousness called sleep where even the characteristic of neuronal signals in the brain shows distinctive properties.

View Article and Find Full Text PDF

Circadian Effects on Vascular Immunopathologies.

Circ Res

March 2024

Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.).

Circadian rhythms exert a profound impact on most aspects of mammalian physiology, including the immune and cardiovascular systems. Leukocytes engage in time-of-day-dependent interactions with the vasculature, facilitating the emigration to and the immune surveillance of tissues. This review provides an overview of circadian control of immune-vascular interactions in both the steady state and cardiovascular diseases such as atherosclerosis and infarction.

View Article and Find Full Text PDF

Interleukin-10 enhances recruitment of immune cells in the neonatal mouse model of obstructive nephropathy.

Sci Rep

March 2024

Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany.

Urinary tract obstruction during renal development leads to inflammation, leukocyte infiltration, tubular cell death, and interstitial fibrosis. Interleukin-10 (IL-10) is an anti-inflammatory cytokine, produced mainly by monocytes/macrophages and regulatory T-cells. IL-10 inhibits innate and adaptive immune responses.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the CBP/p300 histone acetyltransferase (HAT) domain are linked to leukemia and affect leukocyte compartment sizes.
  • The small-molecule A485 was found to quickly mobilize leukocytes from bone marrow to blood, showing similar effectiveness as granulocyte colony-stimulating factor (G-CSF) but working through a different mechanism.
  • A485 activation of the HPA axis influences leukocyte distribution via specific hormones, suggesting a potential new approach for rapidly increasing blood leukocyte levels to help treat various human diseases.
View Article and Find Full Text PDF

Mononuclear phagocytes (MP), i.e., monocytes, macrophages, and dendritic cells (DCs), are essential for immune homeostasis via their capacities to clear pathogens, pathogen components, and non-infectious particles.

View Article and Find Full Text PDF

Type 1 conventional dendritic cells (cDC1s) are critical for anti-cancer immunity. Protective anti-cancer immunity is thought to require cDC1s to sustain T cell responses within tumors, but it is poorly understood how this function is regulated and whether its subversion contributes to immune evasion. Here, we show that tumor-derived prostaglandin E2 (PGE) programmed a dysfunctional state in intratumoral cDC1s, disabling their ability to locally orchestrate anti-cancer CD8 T cell responses.

View Article and Find Full Text PDF

The RNA editor ADAR2 promotes immune cell trafficking by enhancing endothelial responses to interleukin-6 during sterile inflammation.

Immunity

May 2023

Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; RNA Metabolism and Vascular Inflammation Laboratory, Institute of Cardiovascular Regeneration and Department of Cardiology, JW Goethe University Frankfurt, Frankfurt am Main, Germany; Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Heidelberg and Mannheim, Germany; Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany. Electronic address:

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues.

View Article and Find Full Text PDF

Tuning sentinel immune cells.

Science

March 2023

Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.

Neuroimmune interactions in the skin can shape the functions of dendritic cells.

View Article and Find Full Text PDF

Cell surface carbohydrate antigens sialyl Lewis X (sLeX) and Lewis Y (LeY) are paramount glycoconjugates and are abundantly expressed in the receptive endometrium. Furthermore, among the important biological functions of both antigens is their role in leukocytes adhesion and extravasation. Interleukin-1 beta (IL-1β) is involved in the process of human embryo implantation and placenta development.

View Article and Find Full Text PDF

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Here, we provide detailed procedures for a variety of multiparameter fluorescence microscopy imaging methods to explore the spatial organization of DC in tissues and to dissect how DC migrate, communicate, and mediate their multiple functional roles in immunity in a variety of tissue settings. The protocols presented here entail approaches to study DC dynamics and T cell cross-talk by intravital microscopy, large-scale visualization, identification, and quantitative analysis of DC subsets and their functions by multiparameter fluorescence microscopy of fixed tissue sections, and an approach to study DC interactions with tissue cells in a 3D cell culture model.

View Article and Find Full Text PDF

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue.

View Article and Find Full Text PDF

Dendritic cells direct circadian anti-tumour immune responses.

Nature

February 2023

Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

The process of cancer immunosurveillance is a mechanism of tumour suppression that can protect the host from cancer development throughout its lifetime. However, it is unknown whether the effectiveness of cancer immunosurveillance fluctuates over a single day. Here we demonstrate that the initial time of day of tumour engraftment dictates the ensuing tumour size across mouse cancer models.

View Article and Find Full Text PDF

The assessment of leukocyte activation in vivo is mainly based on surrogate parameters, such as cell shape changes and migration patterns. Consequently, additional parameters are required to dissect the complex spatiotemporal activation of leukocytes during inflammation. Here, we showed that intravital microscopy of myeloid leukocyte Ca signals with Ca reporter mouse strains combined with bioinformatic signal analysis provided a tool to assess their activation in vivo.

View Article and Find Full Text PDF

Background: Carbohydrate Lewis antigens including sialyl Lewis A (sLeA), sialyl Lewis X (sLeX), Lewis X (LeX), and Lewis Y (LeY) are the commonest cell surface glycoconjugates that play pivotal roles in multiple biological processes, including cell adhesion and cell communication events during embryogenesis. SLeX, LeY, and associated glycosyltransferases ST3GAL3 and FUT4 have been reported to be involved in human embryo implantation. While the expression pattern of Lewis antigens in the decidua of unexplained recurrent miscarriage (uRM) patients remains unclear.

View Article and Find Full Text PDF

Control of lymph node activity by direct local innervation.

Trends Neurosci

September 2022

Department of Pathology and Immunology (PATIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland; Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel-Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany. Electronic address:

The nervous system detects environmental and internal stimuli and relays this information to immune cells via neurotransmitters and neuropeptides. This is essential to respond appropriately to immunogenic threats and to support system homeostasis. Lymph nodes (LNs) act as sentinels where adaptive immune responses are generated.

View Article and Find Full Text PDF

Ly6DSiglec-H precursors contribute to conventional dendritic cells via a Zbtb46Ly6D intermediary stage.

Nat Commun

June 2022

Institute for Immunology, Biomedical Center, LMU Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.

Plasmacytoid and conventional dendritic cells (pDC and cDC) are generated from progenitor cells in the bone marrow and commitment to pDCs or cDC subtypes may occur in earlier and later progenitor stages. Cells within the CD11cMHCIISiglec-HCCR9 DC precursor fraction of the mouse bone marrow generate both pDCs and cDCs. Here we investigate the heterogeneity and commitment of subsets in this compartment by single-cell transcriptomics and high-dimensional flow cytometry combined with cell fate analysis: Within the CD11cMHCIISiglec-HCCR9 DC precursor pool cells expressing high levels of Ly6D and lacking expression of transcription factor Zbtb46 contain CCR9B220 immediate pDC precursors and CCR9B220 (lo-lo) cells which still generate pDCs and cDCs in vitro and in vivo under steady state conditions.

View Article and Find Full Text PDF

The circadian immune system.

Sci Immunol

June 2022

Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

The immune system is highly time-of-day dependent. Pioneering studies in the 1960s were the first to identify immune responses to be under a circadian control. Only in the last decade, however, have the molecular factors governing circadian immune rhythms been identified.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) arise from committed precursor dendritic cells (pre-DCs) in the bone marrow that continuously seed the periphery. Pre-DCs and other upstream progenitors proliferate and mature in response to Fms-related receptor tyrosine kinase 3 ligand, which is considered the key cytokine for cDC development. However, other cytokines such as stem cell factor and colony-stimulating factor 1 (CSF1) were also shown to induce pre-DC maturation into DC-like cells.

View Article and Find Full Text PDF

Mast cells (MCs) are crucial players in the relationship between the tumor microenvironment (TME) and cancer cells and have been shown to influence angiogenesis and progression of human colorectal cancer (CRC). However, the role of MCs in the TME is controversially discussed as either pro- or anti-tumorigenic. Genetically engineered mouse models (GEMMs) are the most frequently used in vivo models for human CRC research.

View Article and Find Full Text PDF

Opening of the endothelial barrier and targeted infiltration of leukocytes into the affected tissue are hallmarks of the inflammatory response. The molecular mechanisms regulating these processes are still widely elusive. In this study, we elucidate a novel regulatory network, in which miR-125a acts as a central hub that regulates and synchronizes both endothelial barrier permeability and monocyte migration.

View Article and Find Full Text PDF