499 results match your criteria: "Institute for Biophysics[Affiliation]"

The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.

View Article and Find Full Text PDF

MS -Pushing the Limits for Biomolecular Mass Spectrometry.

J Am Soc Mass Spectrom

January 2025

Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany.

Electrospray mass spectrometry has become indispensable in many disciplines including the classic "omics" techniques such as proteomics or lipidomics, as well as other life science applications in molecular, cellular, and structural biology. However, a limiting factor that often arises for the detection of biomolecular analytes is their poor ionization efficiency in the ion source. Here, we present an add-on device for the electrospray source, termed MS (MS Spectral Impurity Eliminator & Value Enhancer), which is placed between the electrospray needle and the cone of the mass spectrometer.

View Article and Find Full Text PDF

RNA splicing enables the functional adaptation of cells to changing contexts. Impaired splicing has been associated with diseases, including retinitis pigmentosa, but the underlying molecular mechanisms and cellular responses remain poorly understood. In this work, we report that deficiency of ubiquitin-specific protease 39 (USP39) in human cell lines, zebrafish larvae, and mice led to impaired spliceosome assembly and a cytotoxic splicing profile characterized by the use of cryptic 5' splice sites.

View Article and Find Full Text PDF

Substrate topography is vital in determining cell growth and fate of cellular behavior. Although current in vitro studies of the underlying cellular signaling pathways mostly rely on their induction by specific growth factors or chemicals, the influence of substrate topography on specific changes in cells has been explored less often. This study explores the impact of substrate topography, specifically the tricot knit microfibrous structure of alumina textiles, on cell behavior, focusing on fibroblasts and keratinocytes for potential wound healing applications.

View Article and Find Full Text PDF

In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events preceding a shot, to improve the accuracy of the expected goals (xG) metric.

View Article and Find Full Text PDF

Membrane proteins tend to be difficult to study since they need to be integrated into a lipid bilayer membrane to function properly. This study presents a method to synthesize a macroscopically large and freely transportable membrane with integrated membrane proteins which is useful for studying membrane proteins and protein complexes in isolation. The method could serve as a blueprint for the production of larger quantities of functionalised membranes for integration into technical devices similar to the MinION DNA sequencer.

View Article and Find Full Text PDF
Article Synopsis
  • Developmental transcription factors, like PBX1, function in complex networks whose specificity in cells and tissues remains unclear.
  • Through various genomic techniques, the study revealed that PBX1 interacts with multiple partners, including TCF3 and TCF4, which play important roles in adult neurogenesis.
  • The research highlights a potential cooperation between PBX1 and TCF3 in cell proliferation, suggesting their interaction may also be relevant in leukemia, particularly due to the presence of a TCF3::PBX1 fusion in a subtype of acute lymphoblastic leukemia.
View Article and Find Full Text PDF
Article Synopsis
  • * The study examined how factors like scaffold layering, cross-linking time, and freeze-drying impact the stability and properties of these nanofibers, finding that cross-linking with formaldehyde vapor offers optimal stability.
  • * Results show that different cross-linking times alter mechanical properties without changing hydration, and the nanofibers have a higher susceptibility to enzyme degradation compared to planar forms, highlighting their potential in soft tissue applications.
View Article and Find Full Text PDF

We study poly-crystalline spherical drops of an aqueous suspension of highly charged colloidal spheres exposed to a colloid-free aqueous environment. Crystal contours were obtained from standard optical imaging. The crystal spheres first expand to nearly four times their initial volume before slowly shrinking due to dilution-induced melting.

View Article and Find Full Text PDF
Article Synopsis
  • Global warming threatens crop yields, making it crucial to understand thermotolerance mechanisms in plants.
  • Several heat stress transcription factors (HSFs) regulate how plants respond to high temperatures, but the specific regulators of alternative splicing related to heat stress are still unclear.
  • In tomatoes, the splicing factors RS2Z35 and RS2Z36 play a key role in regulating HSFA2 splicing and influence nearly 50% of RNAs that undergo temperature-sensitive alternative splicing, suggesting that they help enhance plants' ability to cope with heat stress.
View Article and Find Full Text PDF

The antibiotic roseoflavin is a riboflavin (vitamin B) analog. One step of the roseoflavin biosynthetic pathway is catalyzed by the phosphatase RosC, which dephosphorylates 8-demethyl-8-amino-riboflavin-5'-phosphate (AFP) to 8-demethyl-8-amino-riboflavin (AF). RosC also catalyzes the potentially cell-damaging dephosphorylation of the AFP analog riboflavin-5'-phosphate also called "flavin mononucleotide" (FMN), however, with a lower efficiency.

View Article and Find Full Text PDF

Nanosecond chain dynamics of single-stranded nucleic acids.

Nat Commun

July 2024

Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.

The conformational dynamics of single-stranded nucleic acids are fundamental for nucleic acid folding and function. However, their elementary chain dynamics have been difficult to resolve experimentally. Here we employ a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and nanophotonic enhancement to determine the conformational ensembles and rapid chain dynamics of short single-stranded nucleic acids in solution.

View Article and Find Full Text PDF

Arid5a uses disordered extensions of its core ARID domain for distinct DNA- and RNA-recognition and gene regulation.

J Biol Chem

July 2024

Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; University of Greifswald, Institute of Biochemistry, Greifswald, Germany. Electronic address:

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain.

View Article and Find Full Text PDF

In this work, we experimentally investigate the potency of high pressure to drive a protein toward an excited state where an inhibitor targeted for this state can bind. Ras proteins are small GTPases cycling between active GTP-bound and inactive GDP-bound states. Various states of GTP-bound Ras in active conformation coexist in solution, amongst them, state 2 which binds to effectors, and state 1, weakly populated at ambient conditions, which has a low affinity for effectors.

View Article and Find Full Text PDF

Encoding prior knowledge in ensemble refinement.

J Chem Phys

March 2024

Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.

The proper balancing of information from experiment and theory is a long-standing problem in the analysis of noisy and incomplete data. Viewed as a Pareto optimization problem, improved agreement with the experimental data comes at the expense of growing inconsistencies with the theoretical reference model. Here, we propose how to set the exchange rate a priori to properly balance this trade-off.

View Article and Find Full Text PDF

IHMCIF: An Extension of the PDBx/mmCIF Data Standard for Integrative Structure Determination Methods.

J Mol Biol

September 2024

Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA.

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.

View Article and Find Full Text PDF

Mechanism of proton-powered c-ring rotation in a mitochondrial ATP synthase.

Proc Natl Acad Sci U S A

March 2024

Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main 60438, Germany.

Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton.

View Article and Find Full Text PDF

Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries.

Cell

February 2024

Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland. Electronic address:

Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins.

View Article and Find Full Text PDF

Hierarchical Assembly of Single-Stranded RNA.

J Chem Theory Comput

March 2024

Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.

Single-stranded RNA (ssRNA) plays a major role in the flow of genetic information-most notably, in the form of messenger RNA (mRNA)-and in the regulation of biological processes. The highly dynamic nature of chains of unpaired nucleobases challenges structural characterizations of ssRNA by experiments or molecular dynamics (MD) simulations alike. Here, we use hierarchical chain growth (HCG) to construct ensembles of ssRNA chains.

View Article and Find Full Text PDF

Tracing the substrate translocation mechanism in P-glycoprotein.

Elife

January 2024

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States.

P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011).

View Article and Find Full Text PDF

Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life.

View Article and Find Full Text PDF

Pyridylpiperazine efflux pump inhibitor boosts in vivo antibiotic efficacy against K. pneumoniae.

EMBO Mol Med

January 2024

Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France.

Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor.

View Article and Find Full Text PDF

Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost.

View Article and Find Full Text PDF

The use of protoplasts in plant biology has become a convenient tool for the application of transient gene expression. This model system has allowed the study of plant responses to biotic and abiotic stresses, protein location and trafficking, cell wall dynamics, and single-cell transcriptomics, among others. Although well-established protocols for isolating protoplasts from different plant tissues are available, they have never been used for studying plant cells using cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET).

View Article and Find Full Text PDF
Article Synopsis
  • Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are rare disorders affecting sensory and autonomic neurons, making them hard to study due to limited data.
  • A large international study identified 80 new pathogenic variants in 73 families across known CIP/HSAN-related genes, expanding knowledge on these diseases.
  • Advanced methodologies like in silico predictions and metabolic tests improved variant classification, crucial for guiding future gene-specific treatments in clinical trials.
View Article and Find Full Text PDF