29 results match your criteria: "Institute for Biomedical and Neural Engineering[Affiliation]"

Five Padua days on muscle and mobility medicine (2024Pdm3) 27 February - 2 March, 2024 at Hotel Petrarca, Thermae of Euganean Hills, Padua, and San Luca Hall, Prato della Valle, Padua, Italy.

Eur J Transl Myol

December 2023

Department of Biomedical Sciences, University of Padova, Padova, Italy; CIR MYO - Interdepartmental Research Centre of Myology, University of Padua, Italy; A & C Mioni-Carraro Foundation for Translational Myology, Padua.

At the end of the 2023 Padua Days of Muscle and Mobility Medicine the next year's meeting was scheduled from 27 February to 2 March 2024 (2024Pdm3). During the summer and autumn the program was confirmed with Scientific Sessions that will take place over five days, starting in the afternoon of February 27, 2024 at the Conference Room of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As usual, the next day will be spent in Padua, in this occasion at the San Luca Hall of the Santa Giustina monastery in Prato della Valle, Padua, Italy.

View Article and Find Full Text PDF

Innovative strategies have shown beneficial effects in healing wound management involving, however, a time-consuming and arduous process in clinical contexts. Micro-fragmented skin tissue acts as a slow-released natural scaffold and continuously delivers growth factors, and much other modulatory information, into the microenvironment surrounding damaged wounds by a paracrine function on the resident cells which supports the regenerative process. In this study, in vitro and in vivo investigations were conducted to ascertain improved effectiveness and velocity of the wound healing process with the application of fragmented dermo-epidermal units (FdeU), acquired via a novel medical device (Hy-Tissue Micrograft Technology).

View Article and Find Full Text PDF

Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability.

View Article and Find Full Text PDF

Bone is an extraordinary biological material that continuously adapts its hierarchical microstructure to respond to static and dynamic loads for offering optimal mechanical features, in terms of stiffness and toughness, across different scales, from the sub-microscopic constituents within osteons-where the cyclic activity of osteoblasts, osteoclasts, and osteocytes redesigns shape and percentage of mineral crystals and collagen fibers-up to the macroscopic level, with growth and remodeling processes that modify the architecture of both compact and porous bone districts. Despite the intrinsic complexity of the bone mechanobiology, involving coupling phenomena of micro-damage, nutrients supply driven by fluid flowing throughout hierarchical networks, and cells turnover, successful models and numerical algorithms have been presented in the literature to predict, at the macroscale, how bone remodels under mechanical stimuli, a fundamental issue in many medical applications such as optimization of femur prostheses and diagnosis of the risk fracture. Within this framework, one of the most classical strategies employed in the studies is the so-called Stanford's law, which allows uploading the effect of the time-dependent load-induced stress stimulus into a biomechanical model to guess the bone structure evolution.

View Article and Find Full Text PDF

The successful clinical application of bone tissue engineering requires customized implants based on the receiver's bone anatomy and defect characteristics. Three-dimensional (3D) printing in small animal orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. In veterinary medicine, because of the wide range of dimensions and anatomical variances, receiver-specific diagnosis and therapy are even more critical.

View Article and Find Full Text PDF

Although previous studies have highlighted the association between physical activity and lower extremity function (LEF) in elderly individuals, the mechanisms underlying this relationship remain debated. Our recent work has recognized the utility of nonlinear trimodal regression analysis (NTRA) parameters in characterizing changes in soft tissue radiodensity as a quantitative construct for sarcopenia in the longitudinal, population-based cohort of the AGES-Reykjavík study. For the present work, we assembled a series of prospective multivariate regression models to interrogate whether NTRA parameters mediate the 5-year longitudinal relationship between physical activity and LEF in AGES-Reykjavík participants.

View Article and Find Full Text PDF

Testing soft tissue radiodensity parameters interplay with age and self-reported physical activity.

Eur J Transl Myol

July 2021

Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland; Department of Science, Landspítali, Reykjavík.

Aging well is directly associated to a healthy lifestyle. The focus of this paper is to relate individual wellness with medical image features. Non-linear trimodal regression analysis (NTRA) is a novel method that models the radiodensitometric distributions of x-ray computed tomography (CT) cross-sections.

View Article and Find Full Text PDF

Health technology assessment through Six Sigma Methodology to assess cemented and uncemented protheses in total hip arthroplasty.

Eur J Transl Myol

March 2021

Reykjavík University, Institute for Biomedical and Neural Engineering, Reykjavík, Iceland; Landspítali Hospital, Department of Science, Reykjavík.

The purpose of this study is to use Health Technology Assessment (HTA) through the Six Sigma (SS) and DMAIC (Define, Measure, Analyse, Improve, Control) problem-solving strategies for comparing cemented and uncemented prostheses in terms of the costs incurred for Total hip arthroplasty (THA) and the length of hospital stay (LOS). Multinomial logistic regression analysis for modelling the data was also performed. Quantitative parameters extracted from gait analysis, electromyography and computed tomography images were used to compare the approaches, but the analysis did not show statistical significance.

View Article and Find Full Text PDF

There are two surgical approaches to performing total hip arthroplasty (THA): a cemented or uncemented type of prosthesis. The choice is usually based on the experience of the orthopaedic surgeon and on parameters such as the age and gender of the patient. Using machine learning (ML) techniques on quantitative biomechanical and bone quality data extracted from computed tomography, electromyography and gait analysis, the aim of this paper was, firstly, to help clinicians use patient-specific biomarkers from diagnostic exams in the prosthetic decision-making process.

View Article and Find Full Text PDF

Background: The aim of the study was to compare the bone mineral density changes between unmatched patients undergoing total hip arthroplasty receiving uncemented and cemented type of implants. Previous studies have used DEXA or a two dimensional analysis to estimate the bone quality following total joint replacement, whereas this study presents the changes in three dimensions.

Methods: Fifty subjects both male and females receiving both cemented and uncemented type of implant were recruited.

View Article and Find Full Text PDF

The nonlinear trimodal regression analysis (NTRA) method based on radiodensitometric CT images distributions was developed for the quantitative characterization of soft tissue changes according to the lower extremity function of elderly subjects. In this regard, the NTRA method defines 11 subject-specific soft tissue parameters and has illustrated high sensitivity to changes in skeletal muscle form and function. The present work further explores the use of these 11 NTRA parameters in the construction of a machine learning (ML) system to predict body mass index and isometric leg strength using tree-based regression algorithms.

View Article and Find Full Text PDF

The nonlinear trimodal regression analysis (NTRA) method based on radiodensitometric CT distributions was recently developed and assessed for the quantification of lower extremity function and nutritional parameters in aging subjects. However, the use of the NTRA method for building predictive models of cardiovascular health was not explored; in this regard, the present study reports the use of NTRA parameters for classifying elderly subjects with coronary heart disease (CHD), cardiovascular disease (CVD), and chronic heart failure (CHF) using multivariate logistic regression and three tree-based machine learning (ML) algorithms. Results from each model were assembled as a typology of four classification metrics: total classification score, classification by tissue type, tissue-based feature importance, and classification by age.

View Article and Find Full Text PDF

All progressive muscle contractile impairments, including advanced age-related muscle power decline, need permanent management. Most elderly persons, in particular octogenarians, spend small amounts of time in daily physical activity, resulting in a decline in body condition with more and more frequent hospitalizations and finally potentially forcing them to bed permanently. Further several neurological injuries, which are even more acutely debilitating than those problems related to aging, are responsible for early limitation of mobility.

View Article and Find Full Text PDF

Objective: Maintaining upright posture is a complex task governed by the integration of afferent sensorimotor and visual information with compensatory neuromuscular reactions. The objective of the present work was to characterize the visual dependency and functional dynamics of cortical activation during postural control.

Approach: Proprioceptic vibratory stimulation of calf muscles at 85 Hz was performed to evoke postural perturbation in open-eye (OE) and closed-eye (CE) experimental trials, with pseudorandom binary stimulation phases divided into four segments of 16 stimuli.

View Article and Find Full Text PDF

After spinal cord injury (SCI), patients spend daily several hours in wheelchairs, sitting on their hamstring muscles. SCI causes muscle atrophy and wasting, which is especially severe after complete and permanent damage to lower motor neurons. A European Union (EU)-supported work demonstrates that electrical fields produced by large electrodes and purpose-developed electrical stimulators recover both quadriceps and hamstring muscles, producing a cushioning effect capable of benefitting SCI patients, even in the worst case of complete and long-term lower motor neuron denervation of leg muscles.

View Article and Find Full Text PDF

Towards a patient-specific estimation of intra-operative femoral fracture risk.

Comput Methods Biomech Biomed Engin

September 2018

a Department of Structures for Engineering and Architecture (DiSt), Polytechnic School - College of Engineering , University of Naples Federico II, Naples , Italy.

Total Hip Arthroplasty requires pre-surgical evaluation between un-cemented and cemented prostheses. A Patient with intra-operative periprosthetic fracture and another with a successful outcome were recruited, and their finite element models were constructed by processing CT data, assuming elastic-plastic behavior of the bone as function of the local density. To resemble the insertion of the prosthesis into the femur, a fictitious thermal dilatation is applied to the broach volume.

View Article and Find Full Text PDF

Total hip arthroplasty is a ubiquitously successful orthopedic surgical procedure, whose prevalence is rising worldwide. While many investigations focus on characterizing periprosthetic pathophysiology, the objective of our research is to develop and describe multi-metric assemblies as a first step toward creating a patient-specific mobility index that rehabilitators and orthopedic surgeons can utilize for prescribing their respective procedures. In total, 48 total hip arthroplasty patients (both cemented and uncemented) undergoing unilateral, primary surgery went through computed tomographic scans and gait analysis measurements both before and 1 year following their surgery.

View Article and Find Full Text PDF

Sarcopenic muscular degeneration has been consistently identified as an independent risk factor for mortality in aging populations. Recent investigations have realized the quantitative potential of computed tomography (CT) image analysis to describe skeletal muscle volume and composition; however, the optimum approach to assessing these data remains debated. Current literature reports average Hounsfield unit (HU) values and/or segmented soft tissue cross-sectional areas to investigate muscle quality.

View Article and Find Full Text PDF

Biomechanical analysis of the Universal 2 implant in total wrist arthroplasty: a finite element study.

Comput Methods Biomech Biomed Engin

August 2017

b Faculty of Engineering, Department of Mechanical and Aerospace Engineering , University of Strathclyde, Glasgow , UK.

Little is known about the mechanics of in vivo loading on total wrist prostheses where many studies have looked at the mechanics of other types of arthroplasty such as for the hip and the knee which has contributed to the overall success of these types of procedures. Currently surgeons would prefer to carry out arthrodesis on the wrist rather than consider arthroplasty as clinical data have shown that the outcome of total wrist arthroplasty is poorer than compared to the hip and knee. More research is needed on the loading mechanisms of the implants in order to enhance the design of future generation implants.

View Article and Find Full Text PDF

Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration.

Comput Math Methods Med

March 2017

Institute for Biomedical and Neural Engineering, Reykjavík University, Menntavegur 1, 101 Reykjavík, Iceland; Department of Rehabilitation, Landspítali, Hringbraut, 101 Reykjavík, Iceland.

Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods.

View Article and Find Full Text PDF

Background: The high risk of fracture associated with chronic spinal cord injury (SCI) is attributed to extensive disuse-related bone loss in previously weight-bearing long bones. Changes in bone mineral density (BMD) after SCI have been documented extensively for the epiphyses of the tibia and femur, fracture-prone sites in this patient group. Less attention has been given to patterns of cortical bone loss in the diaphyses, but variability in BMD distributions throughout the long bones may contribute to some patients' increased susceptibility to shaft fractures in chronic SCI.

View Article and Find Full Text PDF
Article Synopsis
  • As people age, they naturally lose muscle strength starting from around age 30, and this continues until they’re very old, at about 110 years.
  • Research shows that staying active helps older people maintain stronger muscles compared to those who don't exercise.
  • A method called Functional Electrical Stimulation (FES) can help recover muscle size and strength, especially in people who can’t exercise on their own, making it useful in places like hospitals and rehab centers.
View Article and Find Full Text PDF

Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT) and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions.

View Article and Find Full Text PDF

Biology of Muscle Atrophy and of its Recovery by FES in Aging and Mobility Impairments: Roots and By-Products.

Eur J Transl Myol

August 2015

Laboratory of Translational Myology of the Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Italy; Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria.

There is something in our genome that dictates life expectancy and there is nothing that can be done to avoid this; indeed, there is not yet any record of a person who has cheated death. Our physical prowess can vacillate substantially in our lifetime according to our activity levels and nutritional status and we may fight aging, but we will inevitably lose. We have presented strong evidence that the atrophy which accompanies aging is to some extent caused by loss of innervation.

View Article and Find Full Text PDF

This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n.

View Article and Find Full Text PDF