1,075 results match your criteria: "Institute for Bioengineering of Catalonia IBEC[Affiliation]"

Data set from gas sensor array under flow modulation.

Data Brief

June 2015

B2SLab, Department of ESAII, Universitat Politenica de Catalunya, Pau Gargallo 5, Barcelona, Spain ; Centro de Investigacion Biomedica en Red en Bioingenierıa, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.

Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle.

View Article and Find Full Text PDF

Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes.

Biosens Bioelectron

December 2015

Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Electronics Department, University of Barcelona (UB), Martí i Franquès 1-11, Barcelona 08028, Spain. Electronic address:

Here we describe a label-free electrochemical DNA sensor based on poly(3,4-ethylenedioxythiophene)-modified (PEDOT-modified) electrodes. An acetylene-terminated DNA probe, complementary to a specific "Hepatitis C" virus sequence, was immobilized onto azido-derivatized conducting PEDOT electrodes using "click" chemistry. DNA hybridization was then detected by differential pulse voltammetry, evaluating the changes in the electrochemical properties of the polymer produced by the recognition event.

View Article and Find Full Text PDF

Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts.

Stem Cell Res Ther

May 2015

ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.

Engineered bioimplants for cardiac repair require functional vascularization and innervation for proper integration with the surrounding myocardium. The aim of this work was to study nerve sprouting and neovascularization in an acellular pericardial-derived scaffold used as a myocardial bioimplant. To this end, 17 swine were submitted to a myocardial infarction followed by implantation of a decellularized human pericardial-derived scaffold.

View Article and Find Full Text PDF

Biological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelope--the bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process.

View Article and Find Full Text PDF

Galactosylceramides (GalCer) are glycosphingolipids bound to a monosaccharide group, responsible for inducing extensive hydrogen bonds that yield their alignment and accumulation in the outer leaflet of the biological membrane together with cholesterol (Chol) in rafts. In this work, the influence of GalCer on the nanomechanical properties of supported lipid bilayers (SLBs) based on DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DLPC (1,2-didodecanoyl-sn-glycero-3-phosphocoline) as model systems was assessed. Phosphatidylcholine (PC):GalCer SLBs were characterized by means of differential scanning calorimetry (DSC) and atomic force microscopy (AFM), in both imaging and force spectroscopy (AFM-FS) modes.

View Article and Find Full Text PDF

Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin.

Nanomedicine

October 2015

I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Portugal. Electronic address:

Unlabelled: Pulmonary delivery of drugs for both local and systemic action has gained new attention over the last decades. In this work, different amphiphilic polymers (Soluplus®, Pluronic® F68, Pluronic® F108 and Pluronic® F127) were used to produce lyophilized formulations for inhalation of insulin. Development of stimuli-responsive, namely glucose-sensitive, formulations was also attempted with the addition of phenylboronic acid (PBA).

View Article and Find Full Text PDF

Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy.

J Control Release

July 2015

Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain. Electronic address:

One of the most important factors behind resistance evolution in malaria is the failure to deliver sufficiently high amounts of drugs to early stages of Plasmodium-infected red blood cells (pRBCs). Despite having been considered for decades as a promising approach, the delivery of antimalarials encapsulated in immunoliposomes targeted to pRBCs has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here we show that encapsulation efficiencies reaching >96% are achieved for the weak basic drugs chloroquine (CQ) and primaquine using the pH gradient loading method in liposomes containing neutral saturated phospholipids.

View Article and Find Full Text PDF

The ability of holding back the undesired molecules, but at the same time to provide the right distribution and orientation of the bioreceptors, are critical targets to reach an efficient hybridization and enhanced detection in electrochemical DNA biosensors. The main actors responsible of these key functions are the substrate of the sensor and the interface auto-assembled on it. In this paper we present the annealing as a method to improve commercial gold evaporated substrates for biosensor applications.

View Article and Find Full Text PDF

Cellular responses to chemical cues are at the core of a myriad of fundamental biological processes ranging from embryonic development to cancer metastasis. Most of these biological processes are also influenced by mechanical cues such as the stiffness of the extracellular matrix. How a biological function is influenced by a synergy between chemical concentration and extracellular matrix stiffness is largely unknown, however, because no current strategy enables the integration of both types of cues in a single experiment.

View Article and Find Full Text PDF

Biosensors, small devices enabling selective bioanalysis because of properly assembled biological recognition molecules, represent the fortuitous results of years of interdisciplinary and complementary investigations in different fields of science. The ultimate role of a biosensor is to provide coupling between the recognition element and the analyte of interest, bringing a quantitative value of its concentrations into a complex sample matrix. They offer many advantages.

View Article and Find Full Text PDF

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA.

View Article and Find Full Text PDF

Ribonucleotide reductases (RNRs) are a family of sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides (dNTPs), the building blocks for DNA synthesis and repair. Although any living cell must contain one RNR activity to continue living, bacteria have the capacity to encode different RNR classes in the same genome, allowing them to adapt to different environments and growing conditions. Pseudomonas aeruginosa is well known for its adaptability and surprisingly encodes all three known RNR classes (Ia, II and III).

View Article and Find Full Text PDF

Solid state formulations composed by amphiphilic polymers for delivery of proteins: characterization and stability.

Int J Pharm

February 2016

CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; INEB - Instituto de Engenharia Biomédica, Biocarrier Group, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto,Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. Electronic address:

Nanocomposite powders composed by polymeric micelles as vehicles for delivery proteins were developed in this work, using insulin as model protein. Results showed that size and polydispersity of micelles were dependent on the amphiphilic polymer used, being all lower than 300 nm, while all the formulations displayed spherical shape and surface charge close to neutrality. Percentages of association efficiency and loading capacity up to 94.

View Article and Find Full Text PDF

Dielectrophoretic (DEP) manipulation of cells present in real samples is challenging. We show in this work that an interdigitated DEP chip can be used to trap and wash a population of the food-spoiling yeast Zygosaccharomyces rouxii that contaminates a sample of apple juice. By previously calibrating the chip, the yeast population loaded is efficiently trapped, washed, and recovered in a small-volume fraction that, in turn, can be used for efficient PCR detection of this yeast.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity.

View Article and Find Full Text PDF

The present paper reports a bacteria autonomous controlled concentrator prototype with a user-friendly interface for bench-top applications. It is based on a microfluidic lab-on-a-chip and its associated custom instrumentation, which consists of a dielectrophoretic actuator, to preconcentrate the sample, and an impedance analyzer, to measure concentrated bacteria levels. The system is composed of a single microfluidic chamber with interdigitated electrodes and an instrumentation with custom electronics.

View Article and Find Full Text PDF

Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy.

Acta Biomater

May 2015

Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; CIBER en Biomateriales, Bioingeniería y Nanomedicina (CIBER-BBN), Spain; Department of Materials Science and Metallurgy, Technical University of Catalonia, Barcelona, Spain.

Many cell therapies rely on the ability of mesenchymal stromal cells (MSCs) to diffuse and localize throughout the target tissue - such as tumoral and ischemic tissues-, in response to specific cytokine signals, rather than being concentrated at the site of implantation. Therefore, it is fundamental to engineer biomaterial carriers as reservoirs, from which cells can migrate, possibly in a controlled manner. In this work, microcarriers (μCs) made of polylactic acid are characterized as MSC delivery vehicles capable of modulating key chemotactic pathways.

View Article and Find Full Text PDF

Although 8% of reported FVIII gene (F8) mutations responsible for haemophilia A (HA) affect mRNA processing, very few have been fully characterized at the mRNA level and/or systematically predicted their biological consequences by in silico analysis. This study is aimed to elucidate the effect of potential splice site mutations (PSSM) on the F8 mRNA processing, investigate its correlation with disease severity, and assess their concordance with in silico predictions. We studied the F8 mRNA from 10 HA patient's leucocytes with PSSM by RT-PCR and compared the experimental results with those predicted in silico.

View Article and Find Full Text PDF

Methods for rectifying cell motions in vitro: breaking symmetry using microfabrication and microfluidics.

Methods Cell Biol

September 2015

Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France.

Cell motility is an important phenomenon in cell biology, developmental biology, and cancer. Here we report methods that we designed to identify and characterize external factors which direct cell motions by breaking locally the symmetry. We used microfabrication and microfluidics techniques to impose and combine mechanical and chemical cues to moving fibroblasts.

View Article and Find Full Text PDF

We describe a novel continuous-flow cell concentrator microdevice based on dielectrophoresis, and its associated custom-made control unit. The performances of a classical interdigitated metal electrode-based dielectrophoresis microfluidic device and this enhanced version, that includes insulator-based pole structures, were compared using the same setup. Escherichia coli samples were concentrated at several continuous flows and the device's trapping efficiencies were evaluated by exhaustive cell counts.

View Article and Find Full Text PDF

Absence of a stable secondary structure is not a limitation for photoswitchable inhibitors of β-arrestin/β-Adaptin 2 protein-protein interaction.

Chem Biol

January 2015

Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain; Department of Organic Chemistry, University of Barcelona (UB), Barcelona 080280, Spain. Electronic address:

Many protein-protein interactions (PPIs) are mediated by short, often helical, linear peptides. Molecules mimicking these peptides have been used to inhibit their PPIs. Recently, photoswitchable peptides with little secondary structure have been developed as modulators of clathrin-mediated endocytosis.

View Article and Find Full Text PDF

A critical step in the life cycle of all organisms is the duplication of the genetic material during cell division. Ribonucleotide reductases (RNRs) are essential enzymes for this step because they control the de novo production of the deoxyribonucleotides required for DNA synthesis and repair. Enterobacteriaceae have three functional classes of RNRs (Ia, Ib, and III), which are transcribed from separate operons and encoded by the genes nrdAB, nrdHIEF, and nrdDG, respectively.

View Article and Find Full Text PDF

Success in incorporating horizontally transferred genes: the H-NS protein.

Trends Microbiol

February 2015

Institute for Bioengineering of Catalonia (IBEC). Baldiri Reixac 15-21, 08028, Barcelona, Spain; Departament de Microbiologia, Universitat de Barcelona, 08028, Barcelona, Spain. Electronic address:

The nucleoid-associated protein H-NS silences unwanted expression of acquired foreign DNA. Ali and colleagues recently identified which horizontally-acquired genes are targeted by H-NS in Salmonella to avoid fitness loss. The reported data strengthen our view about the role of H-NS in bacterial evolution driven by horizontal gene transfer.

View Article and Find Full Text PDF

Chemically powered micro- and nanomotors.

Angew Chem Int Ed Engl

January 2015

Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany) http://www.is.mpg.de/sanchez; Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain).

Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water.

View Article and Find Full Text PDF