1,075 results match your criteria: "Institute for Bioengineering of Catalonia IBEC[Affiliation]"

Microfluidics for the Isolation and Detection of Circulating Tumor Cells.

Adv Exp Med Biol

June 2022

Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample.

View Article and Find Full Text PDF

Biosensors represent a powerful analytical tool for analyzing biomolecular interactions with the potential to achieve real-time quantitative analysis with high accuracy using low sample volumes, minimum sample pretreatment with high potential for the development of in situ and highly integrated monitoring platforms. Considering these advantages, their use in cell-culture systems has increased over the last few years. Between the different technologies for cell culture, organs-on-a-chip (OOCs) represent a novel technology that tries to mimic an organ's functionality by combining tissue engineering/organoid with microfluidics.

View Article and Find Full Text PDF

How to Get Away with Gradients.

Adv Exp Med Biol

June 2022

Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Biomolecular gradients are widely present in multiple biological processes. Historically they were reproduced in vitro by using micropipettes, Boyden and Zigmond chambers, or hydrogels. Despite the great utility of these setups in the study of gradient-related problems such as chemotaxis, they face limitations when trying to translate more complex in vivo-like scenarios to in vitro systems.

View Article and Find Full Text PDF

Biomass-derived isosorbide-based thermoresponsive hydrogel for drug delivery.

Soft Matter

July 2022

Departmento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain.

Herein, we describe the design and synthesis of a new variety of bio-based hydrogel films using a Cu(I)-catalyzed photo-click reaction. These films exhibited thermal-triggered swelling-deswelling and were constructed by crosslinking a triazide derivative of glycerol ethoxylate and dialkyne structures derived from isosorbide, a well-known plant-based platform molecule. The success of the click reaction was corroborated through infrared spectroscopy (FTIR) and the smooth surface of the obtained films was confirmed by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

The present work focuses on the computational study of the structural micro-organization of hydrogels based on collagen-like peptides (CLPs) in complex with Rose Bengal (RB). In previous studies, these hydrogels computationally and experimentally demonstrated that when RB was activated by green light, it could generate forms of stable crosslinked structures capable of regenerating biological tissues such as the skin and cornea. Here, we focus on the structural and atomic interactions of two collagen-like peptides (collagen-like peptide I (CLPI), and collagen-like peptide II, (CLPII)) in the presence and absence of RB, highlighting the acquired three-dimensional organization and going deep into the stabilization effect caused by the dye.

View Article and Find Full Text PDF

Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior.

View Article and Find Full Text PDF

The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation.

View Article and Find Full Text PDF
Article Synopsis
  • * This randomized clinical trial will compare the combined use of RGS and standard care against standard care alone, monitoring patient recovery over a 3-month period and evaluating outcomes at multiple intervals.
  • * Researchers anticipate that the RGS solution will enhance patient recovery, receive high acceptance rates, and minimize healthcare costs by easing the transition from hospital to home rehabilitation.
View Article and Find Full Text PDF

A lattice Boltzmann model for self-diffusiophoretic particles near and at liquid-liquid interfaces.

J Chem Phys

June 2022

Departament de Física de la Materia Condensada, Universitat de Barcelona, Carrer Martí i Franqués 1, 08028 Barcelona, Spain.

We introduce a novel mesoscopic computational model based on a multiphase-multicomponent lattice Boltzmann method for the simulation of self-phoretic particles in the presence of liquid-liquid interfaces. Our model features fully resolved solvent hydrodynamics, and, thanks to its versatility, it can handle important aspects of the multiphysics of the problem, including particle wettability and differential solubility of the product in the two liquid phases. The method is extensively validated in simple numerical experiments, whose outcome is theoretically predictable, and then applied to the study of the behavior of active particles next to and trapped at interfaces.

View Article and Find Full Text PDF

Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins.

View Article and Find Full Text PDF

Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose.

Biomater Sci

July 2022

Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain.

Hydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS.

View Article and Find Full Text PDF

Dual-Responsive Polypropylene Meshes Actuating as Thermal and SERS Sensors.

ACS Biomater Sci Eng

August 2022

Departament d'Enginyeria Química, IMEM-BRT, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, Second Floor, 08019, Barcelona, Spain.

Polypropylene (PP) surgical meshes, with different knitted architectures, were chemically functionalized with gold nanoparticles (AuNPs) and 4-mercaptothiazole (4-MB) to transform their fibers into a surface enhanced Raman scattering (SERS) detectable plastic material. The application of a thin layer of poly[-isopropylacrylamide---methylene bis(acrylamide)] (PNIPAAm--MBA) graft copolymer, covalently polymerized to the mesh-gold substrate, caused the conversion of the inert plastic into a thermoresponsive material, resulting in the first PP implantable mesh with both SERS and temperature stimulus responses. AuNPs were homogeneously distributed over the PP yarns, offering a clear SERS recognition together with higher PNIPAAm lower critical solution temperature (LCST ∼ 37 °C) than without the metallic particles (LCST ∼ 32 °C).

View Article and Find Full Text PDF

Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells.

View Article and Find Full Text PDF

To unveil the influence of cell-matrix adhesions in the establishment of gap junction intercellular communication (GJIC) during cell condensation in chondrogenesis. Previously developed nanopatterns of the cell adhesive ligand arginine-glycine-aspartic acid were used as cell culture substrates to control cell adhesion at the nanoscale. chondrogenesis of mesenchymal stem cells was conducted on the nanopatterns.

View Article and Find Full Text PDF

Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application.

Pharmaceutics

April 2022

Department of Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.

Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts' health benefits are often limited by low bioavailability.

View Article and Find Full Text PDF

The liver neutralizes endogenous and exogenous toxins and metabolites, being metabolically interconnected with many organs. Numerous clinical and experimental studies show a strong association between Non-alcoholic fatty liver disease (NAFLD) and loss of skeletal muscle mass known as sarcopenia. Liver transplantation solves the hepatic-related insufficiencies, but it is unable to revert sarcopenia.

View Article and Find Full Text PDF

Evidence in favor of the essentiality of human cell membrane-bound ACE2 and against soluble ACE2 for SARS-CoV-2 infectivity.

Cell

May 2022

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada. Electronic address:

View Article and Find Full Text PDF

Artificial control of neuronal activity enables the study of neural circuits and restoration of neural functions. Direct, rapid, and sustained photocontrol of intact neurons could overcome the limitations of established electrical stimulation such as poor selectivity. We have developed fast photoswitchable ligands of glutamate receptors (GluRs) to enable neuronal control in the auditory system.

View Article and Find Full Text PDF

The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall.

View Article and Find Full Text PDF

One of the main limitations of in vitro studies on lung diseases is the difficulty of maintaining the type II phenotype of alveolar epithelial cells in culture. This fact has previously been related to the translocation of the mechanosensing Yes-associated protein (YAP) to the nuclei and Rho signaling pathway. In this work, we aimed to culture and subculture primary alveolar type II cells on extracellular matrix lung-derived hydrogels to assess their suitability for phenotype maintenance.

View Article and Find Full Text PDF

A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells.

Cell Metab

June 2022

Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain. Electronic address:

Article Synopsis
  • Diabetic individuals may be more susceptible to severe COVID-19, but the reasons for this connection are not fully understood.
  • Researchers created a human kidney organoid model to study how diabetic conditions affect SARS-CoV-2 infection, finding that diabetic-like organoids had higher viral loads than controls.
  • The study also discovered that altering the metabolic processes in kidney cells from diabetic patients could reduce the susceptibility to the virus, suggesting potential new treatment approaches focusing on energy metabolism.
View Article and Find Full Text PDF

Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups.

Colloids Surf B Biointerfaces

August 2022

Departament d'Enginyeria Química (DEQ) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain. Electronic address:

Peptide derivatives and, most specifically, their self-assembled supramolecular structures are being considered in the design of novel biofunctional materials. Although the self-assembly of triphenylalanine homopeptides has been found to be more versatile than that of homopeptides containing an even number of residues (i.e.

View Article and Find Full Text PDF

Over the most recent decades, the development of new biological platforms to study disease progression and drug efficacy has been of great interest due to the high increase in the rate of neurodegenerative diseases (NDDs). Therefore, blood-brain barrier (BBB) as an organ-on-a-chip (OoC) platform to mimic brain-barrier performance could offer a deeper understanding of NDDs as well as a very valuable tool for drug permeability testing for new treatments. A very attractive improvement of BBB-oC technology is the integration of detection systems to provide continuous monitoring of biomarkers in real time and a fully automated analysis of drug permeably, rendering more efficient platforms for commercialization.

View Article and Find Full Text PDF

Collagen VI-related dystrophies (COL6-RDs) are a group of rare congenital neuromuscular dystrophies that represent a continuum of overlapping clinical phenotypes that go from the milder Bethlem myopathy (BM) to the severe Ullrich congenital muscular dystrophy, for which there is no effective treatment. Mutations in one of the three Collagen VI genes alter the incorporation of this protein into the extracellular matrix (ECM), affecting the assembly and the structural integrity of the whole fibrillar network. Clinical hallmarks of COL6-RDs are secondary to the ECM disruption and include muscle weakness, proximal joint contractures, and distal hyperlaxity.

View Article and Find Full Text PDF