4 results match your criteria: "Institute for Bio- and Geosciences: IBG-1[Affiliation]"

Machine learning in bioprocess development: from promise to practice.

Trends Biotechnol

June 2023

Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; Institute of Process Engineering in Life Sciences, Section III: Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany. Electronic address:

Fostered by novel analytical techniques, digitalization, and automation, modern bioprocess development provides large amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have great potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. Herein we demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring, and control of bioprocesses.

View Article and Find Full Text PDF

Biocatalysis has emerged as an important tool in synthetic organic chemistry enabling the chemical industry to execute reactions with high regio- or enantioselectivity and under usually mild reaction conditions while avoiding toxic waste. Target substrates and products of reactions catalyzed by carboxylic ester hydrolases are often poorly water soluble and require organic solvents, whereas enzymes are evolved by nature to be active in cells, i.e.

View Article and Find Full Text PDF

Esterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function.

View Article and Find Full Text PDF

Fluctuating environments and individual physiological diversity force bacteria to constantly adapt and optimize the uptake of substrates. We focus here on two very similar two-component systems (TCSs) of belonging to the LytS/LytTR family: BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB. Both TCSs respond to extracellular pyruvate, albeit with different affinities, typically during postexponential growth, and each system regulates expression of a single transporter gene, and , respectively.

View Article and Find Full Text PDF