26 results match your criteria: "Institute for Automation and Applied Informatics (IAI)[Affiliation]"

In this perspective, the authors give their view on the developments and experiences on communicating on (nano)materials safety. We would like to share our experiences with the scientific community in order to make them useful for future communication activities. We present the long-term work of the science communication projects DaNa, DaNa2.

View Article and Find Full Text PDF

Hymenoptera has some of the highest diversity and number of individuals among insects. Many of these species potentially play key roles as food sources, pest controllers and pollinators. However, little is known about the diversity and biology and ~80% of the species have not yet been described.

View Article and Find Full Text PDF

The nanoscale arrangement of ligands can have a major effect on the activation of membrane receptor proteins and thus cellular communication mechanisms. Here we report on the technological development and use of tailored DNA origami-based molecular rulers to fabricate "Multiscale Origami Structures As Interface for Cells" (MOSAIC), to enable the systematic investigation of the effect of the nanoscale spacing of epidermal growth factor (EGF) ligands on the activation of the EGF receptor (EGFR). MOSAIC-based analyses revealed that EGF distances of about 30-40 nm led to the highest response in EGFR activation of adherent MCF7 and Hela cells.

View Article and Find Full Text PDF

The opportunistic yeast is the most common cause of candidiasis. With only four classes of antifungal drugs on the market, resistance is becoming a problem in the treatment of fungal infections, especially in immunocompromised patients. The development of novel antifungal drugs with different modes of action is urgent.

View Article and Find Full Text PDF

Microfluidic droplets are an important tool for studying and mimicking biological systems, , to examine with high throughput the interaction of biomolecular components and the functionality of natural cells, or to develop basic principles for the engineering of artificial cells. Of particular importance is the approach to generate a biomimetic membrane by supramolecular self-assembly of nanoparticle components dissolved in the aqueous phase of the droplets at the inner water/oil interface, which can serve both to mechanically reinforce the droplets and as an interaction surface for cells and other components. While this interfacial assembly driven by electrostatic interaction of surfactants is quite well developed for water/mineral oil (W/MO) systems, no approaches have yet been described to exploit this principle for water/fluorocarbon oil (W/FO) emulsion droplets.

View Article and Find Full Text PDF

Endogenous learning for green hydrogen in a sector-coupled energy model for Europe.

Nat Commun

June 2023

Department of Digital Transformation in Energy Systems, Faculty of Process Engineering, TU Berlin, Einsteinufer 25 (TA 8), Berlin, 10587, Berlin, Germany.

Many studies have shown that hydrogen could play a large role in the energy transition for hard-to-electrify sectors, but previous modelling has not included the necessary features to assess its role. They have either left out important sectors of hydrogen demand, ignored the temporal variability in the system or neglected the dynamics of learning effects. We address these limitations and consider learning-by-doing for the full green hydrogen production chain with different climate targets in a detailed European sector-coupled model.

View Article and Find Full Text PDF

Broad ranges of investment configurations for renewable power systems, robust to cost uncertainty and near-optimality.

iScience

May 2023

Department of Digital Transformation in Energy Systems, Institute of Energy Technology, Technische Universität Berlin (TUB), Einsteinufer 25 (TA 8), 10587 Berlin, Germany.

Achieving ambitious emission reduction targets requires energy system planning to accommodate societal preferences, such as transmission reinforcements or onshore wind parks, and acknowledge uncertainties in technology cost projections among many other uncertainties. Current models often solely minimize costs using a single set of cost projections. Here, we apply multi-objective optimization techniques in a fully renewable European electricity system to explore trade-offs between system costs and technology deployment for electricity generation, storage, and transport.

View Article and Find Full Text PDF

To address the challenge of drug resistance and limited treatment options for recurrent gliomas with IDH1 mutations, a highly miniaturized screening of 2208 FDA-approved drugs is conducted using a high-throughput droplet microarray (DMA) platform. Two patient-derived temozolomide-resistant tumorspheres harboring endogenous IDH1 mutations (IDH1 ) are utilized. Screening identifies over 20 drugs, including verteporfin (VP), that significantly affected tumorsphere formation and viability.

View Article and Find Full Text PDF

Automated Zebrafish Phenotype Pattern Recognition: 6 Years Ago, and Now.

Zebrafish

December 2022

Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.

The article assesses the developments in automated phenotype pattern recognition: Potential spikes in classification performance, even when facing the common small-scale biomedical data set, and as a reader, you will find out about changes in the development effort and complexity for researchers and practitioners. After reading, you will be aware of the benefits and unreasonable effectiveness and ease of use of an automated end-to-end deep learning pipeline for classification tasks of biomedical perception systems.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are a promising class of compounds being developed against multi-drug resistant bacteria. Hybridization has been reported to increase antimicrobial activity. Here, two proline-rich peptides (consP1: VRKPPYLPRPRPRPL-CONH and Bac5-v291: RWRRPIRRRPIRPPFWR-CONH) were combined with two arginine-isoleucine-rich peptides (optP1: KIILRIRWR-CONH and optP7: KRRVRWIIW-CONH).

View Article and Find Full Text PDF

Invertebrate biodiversity remains poorly understood although it comprises much of the terrestrial animal biomass, most species and supplies many ecosystem services. The main obstacle is specimen-rich samples obtained with quantitative sampling techniques (e.g.

View Article and Find Full Text PDF

Designing Inherently Photodegradable Cell-Adhesive Hydrogels for 3D Cell Culture.

Adv Healthc Mater

August 2021

Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.

Light-based microfabrication techniques constitute an indispensable approach to fabricate tissue assemblies, benefiting from noncontact spatially and temporarily controlled manipulation of soft matter. Light-triggered degradation of soft materials, such as hydrogels, is important in tissue engineering, bioprinting, and related fields. The photoresponsiveness of hydrogels is generally not intrinsic and requires complex synthetic procedures wherein photoresponsive crosslinking groups are incorporated into the hydrogel.

View Article and Find Full Text PDF

Early and efficient disease diagnosis with low-cost point-of-care devices is gaining importance for personalized medicine and public health protection. Within this context, waveguide-(WG)-based optical biosensors on the silicon-nitride (SiN) platform represent a particularly promising option, offering highly sensitive detection of indicative biomarkers in multiplexed sensor arrays operated by light in the visible-wavelength range. However, while passive SiN-based photonic circuits lend themselves to highly scalable mass production, the integration of low-cost light sources remains a challenge.

View Article and Find Full Text PDF

Early decarbonisation of the European energy system pays off.

Nat Commun

December 2020

Department of Engineering, Aarhus University, Inge Lehmanns Gade 10, 8000, Aarhus, Denmark.

For a given carbon budget over several decades, different transformation rates for the energy system yield starkly different results. Here we consider a budget of 33 GtCO for the cumulative carbon dioxide emissions from the European electricity, heating, and transport sectors between 2020 and 2050, which represents Europe's contribution to the Paris Agreement. We have found that following an early and steady path in which emissions are strongly reduced in the first decade is more cost-effective than following a late and rapid path in which low initial reduction targets quickly deplete the carbon budget and require a sharp reduction later.

View Article and Find Full Text PDF

High-Throughput Screening of Cell Transfection Enhancers Using Miniaturized Droplet Microarrays.

Adv Biosyst

March 2020

Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.

DNA delivery is a powerful research tool for biological research and clinical therapies. However, many nonviral transfection reagents have relatively low transfection efficiency. It is hypothesized that by treating cells with small molecules, the transfection efficiency can be improved.

View Article and Find Full Text PDF

Segregation of Dispersed Silica Nanoparticles in Microfluidic Water-in-Oil Droplets: A Kinetic Study.

Chemphyschem

May 2020

Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Dispersed negatively charged silica nanoparticles segregate inside microfluidic water-in-oil (W/O) droplets that are coated with a positively charged lipid shell. We report a methodology for the quantitative analysis of this self-assembly process. By using real-time fluorescence microscopy and automated analysis of the recorded images, kinetic data are obtained that characterize the electrostatically-driven self-assembly.

View Article and Find Full Text PDF

The effect of lipidation and glycosylation on short cationic antimicrobial peptides.

Biochim Biophys Acta Biomembr

August 2020

Institute for Infection and Immunity, St. George's University of London, London, UK. Electronic address:

The global health threat surrounding bacterial resistance has resulted in antibiotic researchers shifting their focus away from 'traditional' antibiotics and concentrating on other antimicrobial agents, including antimicrobial peptides. These low molecular weight "mini-proteins" exhibit broad-spectrum activity against bacteria, including multi-drug resistant strains, viruses, fungi and protozoa and constitute a major element of the innate-immune system of many multicellular organisms. Some naturally occurring antimicrobial peptides are lipidated and/or glycosylated and almost all antimicrobial peptides in clinical use are either lipopeptides (Daptomycin and Polymyxin E and B) or glycopeptides (Vancomycin).

View Article and Find Full Text PDF

The uncontrolled manifold (UCM) approach has been widely used in recent studies to examine variability in daily tasks; however, it has not yet been used to study running or the effects of expertise. Therefore, the aim of this study was to analyse the synergy structure stabilizing the centre of mass (CoM) trajectory in experts compared to novices during running at two different speeds using a subject-specific 3D model. A total of 25 healthy young adults (13 experts, 12 novices) participated in the study.

View Article and Find Full Text PDF

Two highly active short broad-spectrum AMPs (14D and 69D) with unknown mode of action have been investigated in regards to their effect against the Gram-negative bacteria Escherichia and the Gram-positive bacteria methicillin-resistant (MRSA). Minimal inhibitory concentration (MIC) measurements using a cell density of 10 cfu/ml resulted in values between 16 and 32 µg/ml. Time-kill experiments using 10 cfu/ml revealed complete killing, except for 69D in combination with MRSA, where bacterial load was reduced a million times.

View Article and Find Full Text PDF

Medaka () and zebrafish () contribute substantially to our understanding of the genetic and molecular etiology of human cardiovascular diseases. In this context, the quantification of important cardiac functional parameters is fundamental. We have developed a framework that segments the ventricle of a medaka hatchling from image sequences and subsequently quantifies ventricular dimensions.

View Article and Find Full Text PDF

Microfluidic Chips for Life Sciences-A Comparison of Low Entry Manufacturing Technologies.

Small

August 2019

Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.

Microfluidic water-in-oil droplets are a versatile tool for biological and biochemical applications due to the advantages of extremely small monodisperse reaction vessels in the pL-nL range. A key factor for the successful dissemination of this technology to life science laboratory users is the ability to produce microfluidic droplet generators and related accessories by low-entry barrier methods, which enable rapid prototyping and manufacturing of devices with low instrument and material costs. The direct, experimental side-by-side comparison of three commonly used additive manufacturing (AM) methods, namely fused deposition modeling (FDM), inkjet printing (InkJ), and stereolithography (SLA), is reported.

View Article and Find Full Text PDF

Fish species such as medaka or zebrafish are widely used as animal models to study physiology, disease development, and treatment efficacy. They are also used to study the rapidly growing field of behavior research, such as social interactions, anxiety, and the influence of environmental factors. Here we describe an automated experimental setup allowing the recording of general locomotor activity in combination with a food-on-demand system.

View Article and Find Full Text PDF

This article reports an experimental investigation of the efficacy of self-flushing in the Electrical Discharge Machining (EDM) process in terms of tool wear rate (TWR), hole taper angle and material removal rate (MRR). In addition to a plain cylindrical shape, electrodes of different cross sections (slotted cylindrical, sharp-cornered triangular, round-cornered triangular, sharp-cornered square, round-cornered square, sharp-cornered hexagonal and round-cornered hexagonal) were designed as a means of inducing debris egress and then fabricated in graphite. EDM drilling trials using the rotating shaped electrodes were carried out on a Ti6Al4V workpiece.

View Article and Find Full Text PDF