17 results match your criteria: "Institute for Applied Computing (IAC) "Mauro Picone"[Affiliation]"

Background And Objective: Glucagon-like peptide 1 (GLP-1) is classically identified as an incretin hormone, secreted in response to nutrient ingestion and able to enhance glucose-stimulated insulin secretion. However, other stimuli, such as physical exercise, may enhance GLP-1 plasma levels, and this exercise-induced GLP-1 secretion is mediated by interleukin-6 (IL-6), a cytokine secreted by contracting skeletal muscle. The aim of the study is to propose a mathematical model of IL-6-induced GLP-1 secretion and kinetics in response to physical exercise of moderate intensity.

View Article and Find Full Text PDF

Motivation: methyLImp, a method we recently introduced for the missing value estimation of DNA methylation data, has demonstrated competitive performance in data imputation compared to the existing, general-purpose, approaches. However, imputation running time was considerably long and unfeasible in case of large datasets with numerous missing values.

Results: methyLImp2 made possible computations that were previously unfeasible.

View Article and Find Full Text PDF

Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke, coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date, scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients. We here describe a model of nutrient intake, stomach emptying, and absorption of macronutrients in the gastrointestinal tract during and after the ingestion of a mixed meal, including the contribution of proteins and fats.

View Article and Find Full Text PDF

Bi-allelic hypomorphic mutations in disrupt DNA methyltransferase activity and lead to immunodeficiency, centromeric instability, facial anomalies syndrome, type 1 (ICF1). Although several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient-derived induced pluripotent stem cells (iPSCs) and their CRISPR-Cas9-corrected clones to determine whether correction can globally overcome DNA methylation defects and related changes in the epigenome.

View Article and Find Full Text PDF

Motivation: Gene-disease associations are fundamental for understanding disease etiology and developing effective interventions and treatments. Identifying genes not yet associated with a disease due to a lack of studies is a challenging task in which prioritization based on prior knowledge is an important element. The computational search for new candidate disease genes may be eased by positive-unlabeled learning, the machine learning (ML) setting in which only a subset of instances are labeled as positive while the rest of the dataset is unlabeled.

View Article and Find Full Text PDF

Motivation: Binary (or Boolean) matrices provide a common effective data representation adopted in several domains of computational biology, especially for investigating cancer and other human diseases. For instance, they are used to summarize genetic aberrations-copy number alterations or mutations-observed in cancer patient cohorts, effectively highlighting combinatorial relations among them. One of these is the tendency for two or more genes not to be co-mutated in the same sample or patient, i.

View Article and Find Full Text PDF

Models of networks play a major role in explaining and reproducing empirically observed patterns. Suitable models can be used to randomize an observed network while preserving some of its features, or to generate synthetic graphs whose properties may be tuned upon the characteristics of a given population. In the present paper, we introduce the Fitness-Corrected Block Model, an adjustable-density variation of the well-known Degree-Corrected Block Model, and we show that the proposed construction yields a maximum entropy model.

View Article and Find Full Text PDF

Abstract: A dynamical approach to nonequilibrium molecular dynamics (D-NEMD), proposed in the 1970s by Ciccotti et al., is undergoing a renaissance and is having increasing impact in the study of biological macromolecules. This D-NEMD approach, combining MD simulations in stationary (in particular, equilibrium) and nonequilibrium conditions, allows for the determination of the time-dependent structural response of a system using the Kubo-Onsager relation.

View Article and Find Full Text PDF

The Covid-19 pandemic has had a deep impact on the lives of the entire world population, inducing a participated societal debate. As in other contexts, the debate has been the subject of several d/misinformation campaigns; in a quite unprecedented fashion, however, the presence of false information has seriously put at risk the public health. In this sense, detecting the presence of malicious narratives and identifying the kinds of users that are more prone to spread them represent the first step to limit the persistence of the former ones.

View Article and Find Full Text PDF

Classical molecular dynamics simulations have recently become a standard tool for the study of electrochemical systems. State-of-the-art approaches represent the electrodes as perfect conductors, modeling their responses to the charge distribution of electrolytes via the so-called fluctuating charge model. These fluctuating charges are additional degrees of freedom that, in a Born-Oppenheimer spirit, adapt instantaneously to changes in the environment to keep each electrode at a constant potential.

View Article and Find Full Text PDF

In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) modulate synaptic activity in the central nervous system. The α7 subtype, in particular, has attracted considerable interest in drug discovery as a target for several conditions, including Alzheimer's disease and schizophrenia. Identifying agonist-induced structural changes underlying nAChR activation is fundamentally important for understanding biological function and rational drug design.

View Article and Find Full Text PDF

A new algorithm to solve numerically the evolution of empirical shell models of polarizable systems is presented. It employs constrained molecular dynamics to satisfy exactly, at each time step, the crucial condition that the gradient of the potential with respect to the shell degrees of freedom is null. The algorithm is efficient, stable, and, contrary to the available alternatives, it is symplectic and time reversible.

View Article and Find Full Text PDF

The beneficial effects of physical activity for the prevention and management of several chronic diseases are widely recognized. Mathematical modeling of the effects of physical exercise in body metabolism and in particular its influence on the control of glucose homeostasis is of primary importance in the development of eHealth monitoring devices for a personalized medicine. Nonetheless, to date only a few mathematical models have been aiming at this specific purpose.

View Article and Find Full Text PDF

Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.

J Gerontol A Biol Sci Med Sci

January 2019

DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy.

The feasibility of liver transplantation from old healthy donors suggests that this organ is able to preserve its functionality during aging. To explore the biological basis of this phenomenon, we characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates that a large remodeling in DNA methylation patterns occurs, with 8,823 age-associated differentially methylated CpG probes.

View Article and Find Full Text PDF

Time-reversal symmetry for systems in a constant external magnetic field.

Phys Rev E

July 2017

Institute for Applied Computing "Mauro Picone" (IAC), CNR, Via dei Taurini 19, 00185 Rome, Italy; School of Physics, University College of Dublin UCD-Belfield, Dublin 4, Ireland; and Università di Roma La Sapienza, Ple. A. Moro 5, 00185 Roma, Italy.

The time-reversal properties of charged systems in a constant external magnetic field are reconsidered in this paper. We show that the evolution equations of the system are invariant under a new symmetry operation that implies a new signature property for time-correlation functions under time reversal. We then show how these findings can be combined with a previously identified symmetry to determine, for example, null components of the correlation functions of velocities and currents and of the associated transport coefficients.

View Article and Find Full Text PDF

Equilibrium and nonequilibrium molecular dynamics simulations are combined to compute the full set of coefficients that appear in the phenomenological equations describing thermal transport in a binary mixture subject to a constant thermal gradient. The Dynamical Non-Equilibrium Molecular Dynamics approach (D-NEMD) is employed to obtain the microscopic time evolution of the density and temperature fields, together with that of the mass and energy fluxes. D-NEMD enables one to study not only the steady state, but also the evolution of the fields during the transient that follows the onset of the thermal gradient, up to the establishment of the steady state.

View Article and Find Full Text PDF