7 results match your criteria: "Institute for Applied Computing (IAC) "M. Picone"[Affiliation]"

This paper introduces a comprehensive dataset on West Nile virus outbreaks that have occurred in Italy from September 2012 to November 2022. We have digitized bulletins published by the Italian National Institute of Health to demonstrate the potential utilization of this data for the research community. Our aim is to establish a centralized open access repository that facilitates analysis and monitoring of the disease.

View Article and Find Full Text PDF

We tackle the problem of coupling a spatiotemporal model for simulating the spread and control of an invasive alien species with data coming from image processing and expert knowledge. In this study, we implement a spatially explicit optimal control model based on a reaction-diffusion equation which includes an Holling II type functional response term for modeling the density control rate. The model takes into account the budget constraint related to the control program and searches for the optimal effort allocation for the minimization of the invasive alien species density.

View Article and Find Full Text PDF

We introduce an extended generalised logistic growth model for discrete outcomes, in which spatial and temporal dependence are dealt with the specification of a network structure within an Auto-Regressive approach. A major challenge concerns the specification of the network structure, crucial to consistently estimate the canonical parameters of the generalised logistic curve, e.g.

View Article and Find Full Text PDF

A novel parametric regression model is proposed to fit incidence data typically collected during epidemics. The proposal is motivated by real-time monitoring and short-term forecasting of the main epidemiological indicators within the first outbreak of COVID-19 in Italy. Accurate short-term predictions, including the potential effect of exogenous or external variables are provided.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) is a chronic metabolic disease potentially leading to serious widespread tissue damage. Human organism develops T2D when the glucose-insulin control is broken for reasons that are not fully understood but have been demonstrated to be linked to the emergence of a chronic inflammation. Indeed such low-level chronic inflammation affects the pancreatic production of insulin and triggers the development of insulin resistance, eventually leading to an impaired control of the blood glucose concentration.

View Article and Find Full Text PDF

Motivation: A computational model equipped with the main immunological features of the sea bass (Dicentrarchus labrax L.) immune system was used to predict more effective vaccination in fish. The performance of the model was evaluated by using the results of two in vivo vaccinations trials against L.

View Article and Find Full Text PDF

In this study non-negative matrix factorization (NMF) was hierarchically applied to simulated and in vivo three-dimensional 3 T MRSI data of the prostate to extract patterns for tumour and benign tissue and to visualize their spatial distribution. Our studies show that the hierarchical scheme provides more reliable tissue patterns than those obtained by performing only one NMF level. We compared the performance of three different NMF implementations in terms of pattern detection accuracy and efficiency when embedded into the same kind of hierarchical scheme.

View Article and Find Full Text PDF