323 results match your criteria: "Institute for Advanced Medical Sciences[Affiliation]"

Cell type-specific reporter transgenic chicken lines are invaluable tools in developmental biology, allowing the visualization of dynamics and differentiation states of target cell types in living embryos. Here, we report the establishment of a new transgenic chicken line in which limb mesenchyme and apical ectodermal ridge (AER) cells are labeled with different fluorescent proteins in the embryos. The processes for generating the reporter line involved using tissue-specific promoters, the Tol2 transposon-mediated genomic integration, and clonal culture system of primordial germ cells.

View Article and Find Full Text PDF

Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2.

View Article and Find Full Text PDF

Background: Bortezomib (BTZ), a selective 26 S proteasome inhibitor, is clinically useful in treating multiple myeloma and mantle cell lymphoma. BTZ exerts its antitumor effect by suppressing nuclear factor-B in myeloma cells, promoting endothelial cell apoptosis, and inhibiting angiogenesis. Despite its success, pulmonary complications, such as capillary leak syndrome of the vascular hyperpermeability type, were reported prior to its approval.

View Article and Find Full Text PDF

A germline alteration in the PTEN gene causes a spectrum of disorders conceptualized as PTEN hamartoma tumor syndrome (PHTS), which show high risk of tumor development and a highly variable and complex phenotype. The diagnosis of PHTS is established in a proband by identification of a heterozygous germline PTEN pathogenic variant on molecular genetic testing. In this study, to understand more PTEN-associated clinical phenotype and PHTS in a Japanese population, we extracted 128 germline PTEN rare variants from 113,535 adult Japanese registered in Biobank Japan (BBJ), and categorized 29 pathogenic/likely pathogenic variants in 30 individuals (0.

View Article and Find Full Text PDF

Defects in the H3t Gene Cause an Increase in Leydig Cells With Impaired Spermatogenesis in Mice.

Genes Cells

January 2025

Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Article Synopsis
  • Abnormalities in spermatogenesis can lead to male infertility, highlighting the importance of testicular somatic cells in this process.
  • In a study using mice with a specific gene deletion, researchers found that the absence of normal spermatogenesis caused increased Leydig cell numbers and interstitial space in the testis.
  • The increase in Leydig cells correlated with higher testosterone production and signs of cellular aging, suggesting they play a role in supporting germ cell development during spermatogenesis.
View Article and Find Full Text PDF
Article Synopsis
  • Transplantation of injury/ischemia-induced stem cells (iSCs) from post-stroke human brains has been shown to improve neurological functions in stroke-affected mice, although their effectiveness compared to mesenchymal stem cells (MSCs) remains uncertain.
  • In experiments, both h-iSCs and h-MSCs were transplanted into mice, with results indicating that while both types activated neural stem/progenitor cells (NSPCs), h-iSCs led to greater improvements in a variety of behavioral tasks.
  • Further analysis revealed that interactions between NSPCs and h-iSCs promoted the transdifferentiation toward functional neurons more effectively than interactions with h-MSCs, suggesting h-iSCs may
View Article and Find Full Text PDF

Progressive Amyloid-β Accumulation in the Brain leads to Altered Protein Expressions in the Liver and Kidneys of APP knock-in Mice.

J Pharm Sci

November 2024

Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.

Impaired hepatic and renal function influence Alzheimer's disease (AD) progression; however, whether AD progression affects these important organ functions remains unclear. Here, we investigated the impact of AD progression, characterized by brain amyloid-beta (Aβ) accumulation, on liver and kidney function of App (APP-KI) mice using quantitative proteomics. SWATH-based quantitative proteomics revealed changes in mitochondrial, drug metabolism, and pharmacokinetic-related proteins in mouse liver and kidneys during the early (2-month-old) and intermediate (5-month-old) stages of Aβ accumulation.

View Article and Find Full Text PDF

Brain injuries, such as ischemic stroke, cause cell death. Although phagocytosis of cellular debris is mainly performed by microglia/macrophages (MGs/MΦs), excessive accumulation beyond their phagocytic capacities results in waste product buildup, delaying brain cell regeneration. Therefore, it is essential to increase the potential for waste product removal from damaged brains.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) leads to severe disabilities and remains a significant social and economic challenge. Despite advances in medical research, there are still no effective treatments for SCI. Human amnion-derived mesenchymal stem cells (hAMSCs) have shown potential due to their anti-inflammatory and neuroprotective effects.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the four key driver genes (KRAS, CDKN2A, TP53, SMAD4) in pancreatic ductal adenocarcinoma (PDAC), with KRAS and TP53 being the most common mutations.
  • Researchers developed organoids with KRAS mutations and TP53 loss of function to analyze how these mutations affect cellular processes, specifically highlighting enhanced glycolysis in the double-mutant organoids.
  • They identified triosephosphate isomerase (TPI1) as a potential therapeutic target, as its loss decreased cell proliferation in PDAC cells with TP53 mutations, present in about 70% of PDAC patients.
View Article and Find Full Text PDF

Food shortages due to population growth and climate change are expected to occur in the near future as a problem that urgently requires solutions. Conventional breeding techniques, notably crossbreeding and mutation breeding, are known for being inefficient and time-consuming in obtaining seeds and seedlings with desired traits. Thus, there is an urgent need for novel methods for efficient plant breeding.

View Article and Find Full Text PDF

There are no effective treatment options for patients with poor performance status and limited liver reserve, classified as Child-Pugh Grade B and C. A 61-year-old man with a prior medical history of hepatitis C virus infection was admitted to the hospital with abdominal distension and significant abdominal ascites. He was diagnosed with stage IVB hepatocellular carcinoma (HCC), characterized by multiple metastases to lymph nodes, lungs, and bones.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate a novel technique for cell tracking by visualising the activity of the human sodium/iodide symporter (hNIS) after transplantation of hNIS-expressing multilayered cell sheets in a rat model of chronic myocardial infarction.

Methods: Triple-layered cell sheets were generated from mouse embryonic fibroblasts (MEFs) derived from mice overexpressing hNIS (hNIS-Tg). Myocardial infarction was induced by permanent ligation of the left anterior descending coronary artery in F344 athymic rats, and a triple-layered MEFs sheets were transplanted to the infarcted area two weeks after surgery.

View Article and Find Full Text PDF

There is no established treatment for terminal cancer patients who no longer respond to surgery, radiotherapy, or chemotherapy, and palliative care is the standard worldwide. We performed intensity-modulated radiation therapy for pain relief in a 40-year-old male patient with end-stage small intestinal cancer who had been diagnosed with a life expectancy of two months after chemotherapy had been ineffective. Subsequent administration of seven doses of dendritic cell vaccine recognizing Wim's tumor 1 (WT1) and α-galactosylceramide antigens resulted in significant shrinkage of the cancer and marked improvement of the patient's general condition.

View Article and Find Full Text PDF

Direct Water-Soluble Molecules Transfer from Transplanted Bone Marrow Mononuclear Cell to Hippocampal Neural Stem Cells.

Stem Cells Dev

September 2024

Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation, Kobe, Japan.

Intravascularly transplanted bone marrow cells, including bone marrow mononuclear cells (BM-MNC) and mesenchymal stem cells, transfer water-soluble molecules to cerebral endothelial cells via gap junctions. After transplantation of BM-MNC, this fosters hippocampal neurogenesis and enhancement of neuronal function. Herein, we report the impact of transplanted BM-MNC on neural stem cells (NSC) in the brain.

View Article and Find Full Text PDF

Increasing evidence shows that the administration of mesenchymal stem cells (MSCs) is a promising option for various brain diseases, including ischemic stroke. Studies have demonstrated that MSC transplantation after ischemic stroke provides beneficial effects, such as neural regeneration, partially by activating endogenous neural stem/progenitor cells (NSPCs) in conventional neurogenic zones, such as the subventricular and subgranular zones. However, whether MSC transplantation regulates the fate of injury-induced NSPCs (iNSPCs) regionally activated at injured regions after ischemic stroke remains unclear.

View Article and Find Full Text PDF

Artificial control of intracellular protein dynamics with high precision provides deep insight into complicated biomolecular networks. Optogenetics and caged compound-based chemically induced dimerization (CID) systems are emerging as tools for spatiotemporally regulating intracellular protein dynamics. However, both technologies face several challenges for accurate control such as the duration of activation, deactivation rate and repetition cycles.

View Article and Find Full Text PDF

Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner.

View Article and Find Full Text PDF

During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) can induce immune-related adverse events (irAEs). Liquid biomarkers to predict irAE occurrence are urgently needed. We previously developed an ELISA system to specifically detect soluble PD-L1 (sPD-L1) with PD-1-binding capacity (bsPD-L1).

View Article and Find Full Text PDF

Interleukin 21 promotes IgG1 plasma cell differentiation instead of class switching to IgE via Blimp1 expression.

Eur J Immunol

August 2024

Department of Cell Biology, Institute for Advanced Medical Sciences, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.

IgE is induced by the presence of IL-4 by class switching from IgM through IgG1 to IgE. IL-21 inhibits the IgE class switch by induction of Blimp1 leading to Stat6 and AID downregulation, and plasmablast/plasma cell differentiation.

View Article and Find Full Text PDF

Background: The tumor microenvironment (TME) impacts the therapeutic efficacy of immune checkpoint inhibitors (ICIs). No liquid biomarkers are available to evaluate TME heterogeneity. Here, we investigated the clinical significance of PD-1-binding soluble PD-L1 (bsPD-L1) in gastric cancer (GC) patients and non-small cell lung cancer (NSCLC) patients treated with PD-1/PD-L1 blockade.

View Article and Find Full Text PDF

STAT3 is constitutively activated in many cancer types, including lung cancer, and can induce cancer cell proliferation and cancer stem cell (CSC) maintenance. STAT3 is activated by tyrosine kinases, such as JAK and SRC, but the mechanism by which STAT3 maintains its activated state in cancer cells remains unclear. Here, we show that PRMT5 directly methylates STAT3 and enhances its activated tyrosine phosphorylation in non-small cell lung cancer (NSCLC) cells.

View Article and Find Full Text PDF

Introduction: In this multicenter clinical study, we aimed to investigate the efficacy and safety of the transhepatic arterial administration of granulocyte-colony stimulating factor (G-CSF)-mobilized autologous peripheral blood (PB)-CD34 cells compared with standard therapy in patients with decompensated cirrhosis type C.

Methods: Patients were randomly assigned (2:1) to the CD34 cell transplant (CD34 cell) or standard-of-care (SOC) group and followed up for 52 weeks. The primary endpoints were the non-progression rate of Child-Pugh (CP) scores at 24 weeks post-enrollment and the safety of the protocol treatment.

View Article and Find Full Text PDF