5 results match your criteria: "Institute Functional Oxides for Energy-Efficient Information Technology[Affiliation]"

Article Synopsis
  • Interfaces in heterostructures significantly affect the operation of electronic devices, impacting elements like capacitors and transistors used for memory and logic applications.
  • The study uses operando off-axis electron holography to measure trapped charges at dielectric and metal/dielectric interfaces in HfO- and AlO-based nanocapacitors under applied electric fields.
  • The findings reveal a high density of trapped charges at these interfaces that influences the device's electric field distribution, establishing a linear relationship between trapped charges and the applied bias for the first time.
View Article and Find Full Text PDF

A Time-Domain Perspective on the Structural and Electronic Response in Epitaxial Ferroelectric Thin Films on Silicon.

Nano Lett

August 2024

Helmholtz-Zentrum Berlin für Materialien und Energie, Wilhelm-Conrad-Röntgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany.

This operando study of epitaxial ferroelectric Pb(ZrTi)O capacitors on silicon substrates studies their structural response via synchrotron-based time-resolved X-ray diffraction during hysteresis-loop measurements in the 2-200 kHz range. At high frequencies, the polarization hysteresis loop is rounded and the classical butterfly-like strain hysteresis acquires a flat dumbbell shape. We explain these observations from a time-domain perspective: The polarization and structural motion within the unit cell are coupled to the strain by the piezoelectric effect and limited by domain wall velocity.

View Article and Find Full Text PDF

The wake-up behavior and ON/OFF current ratio of TiN-AlO-HfZrO-W ferroelectric tunnel junction (FTJ) devices were investigated for different wake-up voltage waveforms. We studied triangular and square waves, as well as square pulse trains of equal or unequal voltage amplitudes for positive and negative polarities. We find that the wake-up behavior in these FTJ stacks is highly influenced by the field cycling waveform.

View Article and Find Full Text PDF

Conductive bridge random access memory devices such as Cu/SiO/W are promising candidates for applications in neuromorphic computing due to their fast, low-voltage switching, multiple-conductance states, scalability, low off-current, and full compatibility with advanced Si CMOS technologies. The conductance states, which can be quantized, originate from the formation of a Cu filament in the SiOelectrolyte due to cation-migration-based electrochemical processes. A major challenge related to the filamentary nature is the strong variability of the voltage required to switch the device to its conducting state.

View Article and Find Full Text PDF

Inversely tapered silicon photonic resonators on silicon substrates were shown to host multiple high-Q whispering gallery modes and constitute versatile building blocks for CMOS compatible solid state lighting, optical sensing and modulator devices. So far, numerical analyses by the finite difference time domain method have been used to predict the height distribution of whispering gallery modes in such resonators. In this study, we provide an experimental evidence of this mode distribution along the resonator height by selectively exciting whispering gallery modes using cathodoluminescence spectroscopy.

View Article and Find Full Text PDF