2,338 results match your criteria: "Institute For Stem Cell Biology and Regenerative Medicine[Affiliation]"

Intercellular mRNA transfer alters the human pluripotent stem cell state.

Proc Natl Acad Sci U S A

January 2025

Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.

Intercellular transmission of messenger RNA (mRNA) is being explored in mammalian species using immortal cell lines. Here, we uncover an intercellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells under the condition impermissible for primed hPSC culture.

View Article and Find Full Text PDF

Brain-wide neuronal circuit connectome of human glioblastoma.

Nature

January 2025

Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Glioblastoma (GBM) infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression. Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic. The extent of GBM integration into the brain-wide neuronal circuitry remains unclear.

View Article and Find Full Text PDF

One-step bioprinting of endothelialized, self-supporting arterial and venous networks.

Biofabrication

January 2025

Materials Science & Engineering, Stanford University, McCullough 246, 496 Lomita Mall, Stanford, California, 94305-6104, UNITED STATES.

Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process.

View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Rare diseases are collectively common, affecting approximately one in twenty individuals worldwide. In recent years, rapid progress has been made in rare disease diagnostics due to advances in DNA sequencing, development of new computational and experimental approaches to prioritize genes and genetic variants, and increased global exchange of clinical and genetic data. However, more than half of individuals suspected to have a rare disease lack a genetic diagnosis.

View Article and Find Full Text PDF

Typical high-throughput single-cell RNA-sequencing (scRNA-seq) analyses are primarily conducted by (pseudo)alignment, through the lens of annotated gene models, and aimed at detecting differential gene expression. This misses diversity generated by other mechanisms that diversify the transcriptome such as splicing and V(D)J recombination, and is blind to sequences missing from imperfect reference genomes. Here, we present sc-SPLASH, a highly efficient pipeline that extends our SPLASH framework for statistics-first, reference-free discovery to barcoded scRNA-seq (10x Chromium) and spatial transcriptomics (10x Visium); we also provide its optimized module for preprocessing and -mer counting in barcoded data, BKC, as a standalone tool.

View Article and Find Full Text PDF

Distinct mechanisms control the specific synaptic functions of Neuroligin 1 and Neuroligin 2.

EMBO Rep

January 2025

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Neuroligins are postsynaptic cell-adhesion molecules that regulate synaptic function with a remarkable isoform specificity. Although Nlgn1 and Nlgn2 are highly homologous and biochemically interact with the same extra- and intracellular proteins, Nlgn1 selectively functions in excitatory synapses whereas Nlgn2 functions in inhibitory synapses. How this excitatory/inhibitory (E/I) specificity arises is unknown.

View Article and Find Full Text PDF

Elevated hematopoietic stem cell frequency in mouse alveolar bone marrow.

Stem Cell Reports

January 2025

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan. Electronic address:

Hematopoietic stem cells (HSCs) are crucial for maintaining hematopoietic homeostasis and are localized within distinct bone marrow (BM) niches. While BM niches are often considered similar across different skeletal sites, we discovered that the alveolar BM (al-BM) in the mandible harbors the highest frequency of immunophenotypic HSCs in nine different skeletal sites. Transplantation assays revealed significantly increased engraftment from al-BM compared to femur, tibia, or pelvis BM, likely due to a higher proportion of alveolar HSCs.

View Article and Find Full Text PDF

Response to Letter to the Editor.

J Thorac Oncol

December 2024

Department of Radiation Oncology, Stanford University, Stanford, California; Stanford Cancer Institute, Stanford University, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California. Electronic address:

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) induces an acute reactive state of microglia, which contribute to secondary injury processes through phagocytic activity and release of cytokines. Several receptor tyrosine kinases (RTK) are activated in microglia upon TBI, and their blockade may reduce the acute inflammation and decrease the secondary loss of neurons; thus, RTKs are potential therapeutic targets. We have previously demonstrated that several members of the Fibroblast Growth Factor Receptor (FGFR) family are transiently phosporylated upon TBI; the availability for drug repurposing of FGFR inhibitors makes worthwhile the elucidation of the role of FGFR in the acute phases of the response to TBI and the effect of FGFR inhibition.

View Article and Find Full Text PDF

Long-range regulation of transcription scales with genomic distance in a gene-specific manner.

Mol Cell

January 2025

Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institutes, Stanford University, Stanford, CA 94305, USA. Electronic address:

Although critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here, we bypass the need for sequence-specific transcription factors (TFs) and recruit activators directly using a chimeric array of gRNA oligos to target dCas9 fused to the activator VP64-p65-Rta (CARGO-VPR). We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible when targeted with a single guide.

View Article and Find Full Text PDF

Congenital heart defects (CHD) arise in part due to inherited genetic variants that alter genes and noncoding regulatory elements in the human genome. These variants are thought to act during fetal development to influence the formation of different heart structures. However, identifying the genes, pathways, and cell types that mediate these effects has been challenging due to the immense diversity of cell types involved in heart development as well as the superimposed complexities of interpreting noncoding sequences.

View Article and Find Full Text PDF

Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells.

View Article and Find Full Text PDF

Cancers evolve not only through the acquisition and clonal transmission of somatic mutations but also by epigenetic mechanisms that modify cell phenotype. Here, we use histology-guided and spatial transcriptomics to characterize hepatoblastoma, a childhood liver cancer that exhibits significant histologic and proliferative heterogeneity despite clonal activating mutations in the Wnt/β-catenin pathway. Highly proliferative regions with embryonal histology show high expression of Wnt target genes, the embryonic biliary transcription factor SOX4, and striking focal expression of the growth factor FGF19.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied plasma proteomic profiles linked to subclinical mutations in blood cells, particularly focusing on clonal hematopoiesis of indeterminate potential (CHIP) and its connection to various health outcomes, including coronary artery disease (CAD).
  • The study involved a large, diverse group of participants and identified a significant number of unique proteins associated with key driver genes, showing differences based on genetics, sex, and race.
  • Methods like Mendelian randomization and mouse model tests helped clarify the causal effects of these proteins, revealing shared plasma proteins between CHIP and CAD that could inform future clinical insights.
View Article and Find Full Text PDF

DNMT3A Is Not Required for Disease Maintenance in Primary Human AML, but Is Associated With Increased Leukemia Stem Cell Frequency.

bioRxiv

October 2024

Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University; Stanford, CA, 94305, USA.

Article Synopsis
  • Research on genetic mutations in human cancers seeks to understand their role in initiating and maintaining cancer, specifically focusing on acute myeloid leukemia (AML).
  • In this study, CRISPR methods were used to correct mutations in AML cells from patients, revealing that while mutations are crucial for starting the disease, they are not needed for its ongoing maintenance.
  • These findings suggest that the roles of initiating oncogenes differ significantly from those that sustain cancer, which could influence future cancer treatments and our understanding of cancer progression.
View Article and Find Full Text PDF

Modelling and targeting mechanical forces in organ fibrosis.

Nat Rev Bioeng

April 2024

Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.

Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell-matrix interactions, cell-cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis.

View Article and Find Full Text PDF

Cell-Free DNA in Hematologic Malignancies.

JCO Oncol Pract

November 2024

Department of Medicine, Divisions of Hematology & Oncology, Stanford University Medical Center, Stanford, CA.

Liquid biopsy techniques using cell-free DNA (cfDNA) play an increasingly important role in the characterization and surveillance of solid tumors. For blood cancers, molecular response assessment techniques using circulating malignant cells or bone marrow aspirates are well established in clinical care. However, cfDNA has an emerging role in hematology as well, with the opportunity for disease assessment and quantification independent of circulating disease burden or invasive biopsies.

View Article and Find Full Text PDF

The vasculature of the skeletal system is crucial for bone formation, homoeostasis and fracture repair, yet the diversity and specialization of bone-associated vessels remain poorly understood. Here we identify a specialized type of post-arterial capillary, termed type R, involved in bone remodelling. Type R capillaries emerge during adolescence around trabecular bone, possess a distinct morphology and molecular profile, and are associated with osteoprogenitors and bone-resorbing osteoclasts.

View Article and Find Full Text PDF

CRISPRi/a screens in human iPSC-cardiomyocytes identify glycolytic activation as a druggable target for doxorubicin-induced cardiotoxicity.

Cell Stem Cell

December 2024

Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA. Electronic address:

Doxorubicin is limited in its therapeutic utility due to its life-threatening cardiovascular side effects. Here, we present an integrated drug discovery pipeline combining human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs), CRISPR interference and activation (CRISPRi/a) bidirectional pooled screens, and a small-molecule screening to identify therapeutic targets mitigating doxorubicin-induced cardiotoxicity (DIC) without compromising its oncological effects. The screens revealed several previously unreported candidate genes contributing to DIC, including carbonic anhydrase 12 (CA12).

View Article and Find Full Text PDF

A comprehensive method to analyze single-cell vibrations.

Biophys J

January 2025

Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. Electronic address:

All living cells vibrate depending on metabolism. It has been hypothesized that vibrations are unique for a given phenotype and thereby suitable to diagnose cancer type and stage and to pre-assess the effectiveness of pharmaceutical treatments in real time. However, cells exhibit highly variable vibrational signals, can be subject to environmental noise, and may be challenging to differentiate, having so far limited the phenomenon's applicability.

View Article and Find Full Text PDF

A primer on the pleiotropic endocrine fibroblast growth factor FGF19/FGF15.

Differentiation

December 2024

Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA; Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA. Electronic address:

Fibroblast Growth Factor 19 (FGF19) is a member of the Fibroblast Growth Factor (FGF) family, known for its role in various cellular processes including embryonic development and metabolic regulation. FGF19 functions as an endocrine factor, influencing energy balance, bile acid synthesis, glucose and lipid metabolism, as well as cell proliferation. FGF19 has a conserved structure typical of FGFs but exhibits unique features.

View Article and Find Full Text PDF

Polyclonal regeneration of mouse bone marrow endothelial cells after irradiative conditioning.

Cell Rep

November 2024

Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland. Electronic address:

Bone marrow endothelial cells (BM-ECs) are the essential components of the BM niche and support the function of hematopoietic stem cells (HSCs). However, conditioning for HSC transplantation causes damage to the recipients' BM-ECs and may lead to transplantation-related morbidity. Here, we investigated the cellular and clonal mechanisms of BM-EC regeneration after irradiative conditioning.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a deadly form of glioma notable for its significant intratumoral heterogeneity, which is believed to drive therapy resistance. GBM has been observed to mimic a neural stem cell hierarchy reminiscent of normal brain development. However, it is still unclear how cell-of-origin shapes intratumoral heterogeneity.

View Article and Find Full Text PDF