4 results match your criteria: "Innovation Centre for Online Systems[Affiliation]"

Dynamic Noise Reduction with Deep Residual Shrinkage Networks for Online Fault Classification.

Sensors (Basel)

January 2022

School of Computing, Engineering and Built Environment, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, UK.

Fault signals in high-voltage (HV) power plant assets are captured using the electromagnetic interference (EMI) technique. The extracted EMI signals are taken under different conditions, introducing varying noise levels to the signals. The aim of this work is to address the varying noise levels found in captured EMI fault signals, using a deep-residual-shrinkage-network (DRSN) that implements shrinkage methods with learned thresholds to carry out de-noising for classification, along with a time-frequency signal decomposition method for feature engineering of raw time-series signals.

View Article and Find Full Text PDF

In this work, we aim to classify a wider range of Electromagnetic Interference (EMI) discharge sources collected from new power plant sites across multiple assets. This engenders a more complex and challenging classification task. The study involves an investigation and development of new and improved feature extraction and data dimension reduction algorithms based on image processing techniques.

View Article and Find Full Text PDF

This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert's data analysis in order to identify and label the discharge source type contained within the signal.

View Article and Find Full Text PDF

Electromagnetic Interference (EMI) is a technique for capturing Partial Discharge (PD) signals in High-Voltage (HV) power plant apparatus. EMI signals can be non-stationary which makes their analysis difficult, particularly for pattern recognition applications. This paper elaborates upon a previously developed software condition-monitoring model for improved EMI events classification based on time-frequency signal decomposition and entropy features.

View Article and Find Full Text PDF