531 results match your criteria: "Indira Gandhi Centre for Atomic Research[Affiliation]"

Optical and dielectric properties of divalent copper based double perovskite compound, GdCuTiO.

J Phys Condens Matter

April 2024

Materials Science Group, Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam 603102, Tamil Nadu, India.

In this work, we have investigated high temperature dielectric properties and room temperature optical properties on rare earth ion based orthorhombic GdCuTiO(GCTO). Optical properties like reflectance and band gap were determined from ultra-violet visible (UV-Vis) diffuse reflectance spectroscopy technique and photoluminescence (PL) spectrum. The compound exhibited substantial optical absorption and emission in the visible region.

View Article and Find Full Text PDF

Iron phosphate glasses (IPGs) have been proposed as futuristic materials for nuclear waste immobilization and anode materials for lithium batteries. Recently, many attempts have been made to propose atomistic models of IPGs to explain their properties from an atomistic viewpoint. In this paper, we seek to produce small scale models of IPG that can be handled within the scheme of density functional theory (DFT) to study its electronic structure.

View Article and Find Full Text PDF

This study focuses on a new type of fast responsive solid-state visual colorimetric sensor, custom engineered with dual-entwined porous polymer imbued with chromoionophoric 4-(sec-butyl)- 2-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)phenol (SMDP) probe for selective and ultra-sensitive colorimetric sensing of Cd(II). The polymer monolith, i.e.

View Article and Find Full Text PDF

Ultrafast high-capacity lithium-ion batteries are extremely desirable for portable electronic devices, where Si is the most promising alternative to the conventional graphite anode due to its very high theoretical capacity. However, the low electronic conductivity and poor Li-diffusivity limit its rate capability. Moreover, high volume expansion/contraction upon Li-intake/uptake causes severe pulverization of the electrode, leading to drastic capacity fading.

View Article and Find Full Text PDF

Highly stable nitrogen-doped Graphene Quantum Dots (N-GQD) functionalized with Pamoic Acid (PA@N-GQD) are utilized for nanomolar detection of radioactive elements, Uranium (VI) and Thorium (IV), in pH ± 5.0. The absorption, fluorescence, crystalline nature, elemental composition, functional groups, and morphological state of as-prepared PA@N-GQD are evaluated by UV-visible absorption, photoluminescence, XRD, XPS, FTIR, HRTEM, FESEM, and AFM characterizations.

View Article and Find Full Text PDF

The complexation behavior of carbamoylmethylphosphine oxide ligands (CMPO), a bifunctional phosphine oxide, and their substituted derivatives with Ce(III), Eu(III), Th(IV), U(VI), and Am(III) was probed at the density functional theory (DFT) level. The enhanced extraction of trivalent rare earth elements by the 2-diphenylphosphinylethyl derivative over the conventional CMPO ligand is identified due to the availability of an additional P═O donor group in the former. In addition, the orbital and dispersive interactions play a vital role in the preference of Th(IV) over U(VI) during extraction using CMPO ligands.

View Article and Find Full Text PDF

A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives.

Adv Colloid Interface Sci

February 2024

Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India. Electronic address:

Superhydrophobicity (SHP) is an incredible phenomenon of extreme water repellency of surfaces ubiquitous in nature (E.g. lotus leaves, butterfly wings, taro leaves, mosquito eyes, water-strider legs, etc).

View Article and Find Full Text PDF

. Magnetocardiography (MCG) is a non-invasive and non-contact technique that measures weak magnetic fields generated by the heart. It is highly effective in the diagnosis of heart abnormalities.

View Article and Find Full Text PDF

Microbial biofilms and microbiologically influenced corrosion (MIC) pose serious problems in pipelines transporting freshwater from the reservoir to service water systems and fire water systems of power reactors. The present work aims to design a silane-based epoxy-biocide hybrid coating along with antibacterial compounds on carbon steels (CS) for controlling the MIC of pipeline materials. The optimal inhibitory concentrations of biocides are identified and a robust protocol has been developed to prepare epoxy-based coatings impregnated with three biocides (25 ppm each of benzalkonium chloride, bronopol, and isothiazoline).

View Article and Find Full Text PDF

The effects of pH, MNP concentration, and medium viscosity on the magnetic fluid hyperthermia (MFH) properties of chitosan-coated superparamagnetic FeOnanoparticles (MNPs) are probed here. Due to the protonation of the amide groups, the MNPs are colloidally stable at lower pH (∼2), but form aggregates at higher pH (∼8). The increased aggregate size at higher pH causes the Brownian relaxation time () to increase, leading to a decrease in specific absorption rate (SAR).

View Article and Find Full Text PDF

The Hydrogen in Argon Detectors (HADs) working on the principle of thermal conductivity difference between argon (reference) and argon + H2 (sample) in the cover gas of a sodium-cooled fast breeder reactor using the Wheatstone bridge circuit. The output of HAD is very sensitive to the gas flow rate and to the variation in ambient temperature. The RMSnoise of current was brought within ±1 µA by a constant current source across the bridge.

View Article and Find Full Text PDF

Unlabelled: In this work, we study the microbiologically influenced corrosion (MIC) of AISI 316L (1-2% Mn) and AISI 202 (8-12% Mn) in the presence of manganese-oxidizing biofilms. Microbiological and 16S rRNA amplicon sequencing analysis on biofilms formed on the surfaces of both the SS materials after exposure to seawater for two months showed the presence of predominant Mn-oxidizing bacteria (MnOB) groups. The Mn contents in the biofilms formed on AISI 202 and 316L were 0.

View Article and Find Full Text PDF

The current work focuses on the sequential separation of trivalent lanthanides (except Pm) using modified C silica-packed supports through the reversed-phase high-performance liquid chromatography (RP-HPLC) technique. In the current research, four indigenously synthesized amphiphilic aromatic triamide derivatives, namely N, N, N, N, N, N-hexa(alkyl) benzene-1,3,5-tri carboxamide (alkyl = butyl, hexyl, octyl, and decyl), were employed as column modifiers. The results show that the separation of Ln can be achieved systematically (< 12 min) by tuning the modifiers' functional group and hydrophobic chain and fine-tuning the column modification procedure and separation parameters.

View Article and Find Full Text PDF

Solvent extraction of Zr(IV) in an undiluted phosphonium based ionic liquid (IL) and its selective separation from Ln(III) and An(III) has been investigated in the present study. Eu(III)/Am(III) were chosen as the representative Ln(III)/An(III). Tri(hexyl)tetradecylphosphonium nitrate ([P][NO]) was chosen as IL phase and the feed phase was nitric acid containing the target metal ions.

View Article and Find Full Text PDF

Liquid sodium is the heat transport medium in fast breeder reactors due to its favorable chemical, physical, and nuclear properties. Wetting of liquid sodium with the material of reactor components is essential for the effective functioning of the reactor. Liquid sodium wetting plays a crucial role, such as in (i) heat transfer and (ii) image reconstruction under sodium ultrasonic scanners.

View Article and Find Full Text PDF

Trihalomethanes and physicochemical quality of drinking water in Addis Ababa, Ethiopia.

Heliyon

September 2023

Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, P.O. Box: 56402, Addis Ababa, Ethiopia.

Background: Trihalomethanes (THMs) are the most dominant fraction of all the byproducts formed during chlorination of water. Disinfection by product (DBP) formation in water is a function of numerous factors, including pH, temperature, residual chlorine, source water characteristics, and organic matter. No study has determined the THM level in the drinking water supply of Addis Ababa, Ethiopia.

View Article and Find Full Text PDF

The conventional argument that extraction efficiency depends on the "basicity of the phosphoryl oxygen" is thoroughly examined in this study. The analysis involves studying the electronic structures of various ligands, such as phosphate, phosphonate, phosphinate, and phosphine oxide, as well as variations in their alkyl chain length, and their corresponding uranium complexes. The studies revealed a significant amount of destabilizing strain and steric repulsion for ligands having longer alkyl chains upon complexation.

View Article and Find Full Text PDF

This work demonstrates the fabrication of a simple, low-cost naked-eye colorimetric solid-state sensor model for selective sensing of Cd. The sensor was developed using a polymer monolithic architect; namely, poly(n-allylthiourea-co-ethyleneglycol dimethacrylate) (poly(ATU-co-EGD) imbued with the chromophoric probe, 3-(quinoline-8-yldiazenyl)quinoline-2,4-diol (QYQD). The concocted indigenous perforated structural assemblies were studied through various microscopic, spectroscopic, and diffraction techniques.

View Article and Find Full Text PDF

The effect of cyclic and aromatic substituents on the complexation behavior of phosphine oxide ligands with Am(III) and Eu(III) was investigated at density functional theory (DFT) and domain-based local pair natural orbital coupled-cluster (DLPNO-CC) levels. Combining DFT with accurate coupled cluster methods, we have evaluated the dispersion energy contributions to the complexation energies for trivalent Am and Eu complexes for the first time. Irrespective of the nature of substituents on the P atom, the electronic structure of the P═O group remains identical in all of the ligands.

View Article and Find Full Text PDF

This study demonstrates the multiple carbon morphology forming abilities of two dissimilar polyion complex (PIC)-based double hydrophilic block copolymers (DHBC) along with three different phenol concentrations when subjecting the blend in aqueous media via a hydrothermal-assisted carbonization strategy. The morphological transition from worm-like to spherical along with granular is found for the blend of oppositely charged poly(ethylene glycol) (PEG)-conjugated poly(amino acid) block copolymers, PEG-poly(l-lysine) (PEG-PLys) and PEG-poly(glutamic acid) (PEG-PGlu), along with three different concentrations of phenol. In contrast, after mixing the combination of PEG-PLys and PEG-poly(aspartic acid) (PEG-PAsp) separately with three different phenol contents, elliptical to irregular to spherical structural transition occurred.

View Article and Find Full Text PDF

Background: Invasive recording of His bundle signals (HBS) in electrophysiological study (EPS) is important in determining HV interval, the time taken to activate the ventricles from the His bundle. Noninvasive surface measurements of HBS are attempted by averaging typically 100-200 cardiac cycles of ECG time series in body surface potential mapping (BSPM) and in magnetocardiography (MCG) which records weak cardiac magnetic fields by highly sensitive detectors. However, noninvasive beat-by-beat extraction of HBS is challenged by ramp-like atrial signals and noise in PR segment of the cardiac cycle.

View Article and Find Full Text PDF

Assessment of the growth inhibition and anti-biofilm activity of aptamer (PmA2G02) against Proteus mirabilis 1429.

Res Microbiol

March 2024

Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India. Electronic address:

Proteus mirabilis is known to cause Catheter-associated urinary tract infections (CAUTIs), which exhibit virulence factors linked to forming biofilms. Aptamers have recently been explored as potential anti-biofilm agents. This study demonstrates the anti-biofilm activity of aptamer (PmA2G02) targeting P.

View Article and Find Full Text PDF

Atomic scale understanding of defect induced magnetic interactions resulting in lattice disordering has been deduced in a detailed manner for the first time in CoFeCrAl based on Mössbauer spectroscopic studies and compared with the results obtained in CoFeCrAl and CoFeAl. An interesting linear correlation between valence electron concentration and the mean hyperfine fields at Fe sites in CoFeAl based compounds has been deduced which is observed to exhibit different slopes with the substitution of Cr. This study elucidates an important role of the manifestation of the magnetic interactions especially between Fe, Co and Cr atoms leading to significant changes in the concentration and specific types of defects selectively produced in CoFeCrAl as compared with that of CoFeCrAl subjected to similar non-equilibrium treatments in this study.

View Article and Find Full Text PDF

A simple solvothermal method was used to synthesize a metal-organic framework (MOF) with an Al metal entity, viz., CAU-1 NH. The synthesized MOF was characterized using different techniques like X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy (SEM), field emission SEM (FE-SEM), transmission electron microscopy, small-angle X-ray scattering, positron annihilation lifetime spectroscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Detection and evaluation of fatigue cracks in structural materials are extremely important for life prediction analysis as part of the structural integrity procedure. In this article, we present a novel ultrasonic measurement methodology, based on the diffraction of elastic waves at the crack tips, to monitor the fatigue crack growth near the threshold regime in compact tension specimens at different load ratios. The diffraction phenomenon of ultrasonic waves from the crack tip is demonstrated using a finite element 2D wave propagation simulation.

View Article and Find Full Text PDF