6 results match your criteria: "Indiana University Bloomington IN 47405 USA.[Affiliation]"
Chem Sci
January 2025
Department of Chemistry, Indiana University Bloomington IN 47405 USA
Zirconium-based porous coordination cages have been widely studied and have shown to be potentially useful for many applications as a result of their tunability and stability, likely as a result of their status as a molecular equivalent to the small 8 Å tetrahedral pores of UiO-66 (Zr(μ-O)(μ-OH)(COH)). Functional groups attached to these molecular materials endow them with a range of tunable properties. While so-called multivariate MOFs containing multiple types of functional groups on different bridging ligands within a structure are common, incorporating multiple functional moieties in permanently microporous molecular materials has proved challenging.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, Indiana University Bloomington IN 47405 USA
We describe the syntheses of monapterin, dihydromonapterin and tetrahydromonapterin in optically active forms. The syntheses involved the condensation of l-xylose with phenylhydrazine, providing a hydrazone derivative. The reaction of the resulting hydrazone with triamino-pyrimidinone followed by oxidation of the resulting pteridinone with molecular oxygen furnished pterin containing a hydroxylated side chain.
View Article and Find Full Text PDFRSC Chem Biol
September 2024
Department of Chemistry, Indiana University Bloomington IN 47405 USA
Pharmacokinetic properties and duration of therapeutic action of a pharmaceutical agent can be significantly extended through the combination of two distinct strategies aimed at increasing plasma half-life: fatty acid acylation and Fc-conjugation. Using insulin as a case study, we demonstrate that a doubly protracted insulin analog produces a substantial prolongation of pharmacodynamic effect to lower blood glucose in STZ-treated mice when compared to the Fc-only counterparts. This enhancement is further corroborated by direct pharmacokinetic measurements in rat and dog models, demonstrating the potential for once-monthly insulin therapy.
View Article and Find Full Text PDFNanoscale Adv
March 2023
Department of Chemistry, Indiana University Bloomington IN 47405 USA +1-812-8560087.
Solving Maxwell's equations numerically to map electromagnetic fields in the vicinity of nanostructured metal surfaces can be a daunting task when studying non-periodic, extended patterns. However, for many nanophotonic applications such as sensing or photovoltaics it is often important to have an accurate description of the actual, experimental spatial field distributions near device surfaces. In this article, we show that the complex light intensity patterns formed by closely-spaced multiple apertures in a metal film can be faithfully mapped with sub-wavelength resolution, from near-field to far-field, in the form of a 3D solid replica of isointensity surfaces.
View Article and Find Full Text PDF