13 results match your criteria: "Indian Institute of Technology Guwahati Guwahati - 781039 India.[Affiliation]"
RSC Adv
October 2024
Centre for Sustainable Materials and Surface Metamorphosis, Chennai Institute of Technology Chennai Tamilnadu 600069 India
This work demonstrates the facile one step hydrothermal synthesis of carbon dots doped with nitrogen and sulfur (SCDs). The carbon dots have various uses, including their use as molecular payloads for antioxidant and drug delivery purposes. The sizes of the CDs were determined using transmission electron microscopy (TEM), which revealed an average size of 4.
View Article and Find Full Text PDFIntegrating low-dimensional graphene oxide (GO) with conventional Si technology offers innovative strategies for developing ultrafast wideband photodetectors. In this study, we synthesized GO and explored its potential application in broadband photodetection alongside silicon heterostructures. The as-synthesized GO contains various oxygen functional groups, as evidenced by X-ray photoelectron and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFNanoscale Adv
January 2024
Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur Kharagpur - 721302 India
Nanowire-based field-effect transistors (FETs) are widely used to detect biomolecules precisely. However, the fabrication of such devices involves complex integration procedures of nanowires into the device and most are not easily scalable. In this work, we report a straightforward fabrication approach that utilizes the grain boundaries of the semiconducting film of organic FETs to fabricate biosensors for the detection of human serum albumin (HSA) with an enhanced sensitivity and detection range.
View Article and Find Full Text PDFNanoscale Adv
February 2022
Department of Physics, Indian Institute of Technology Guwahati Guwahati 781039 India
The past decade has witnessed tremendous progress in metal halide perovskites, particularly in lead (Pb) halide perovskites, because of their extraordinary performance in cutting-edge optoelectronic devices. However, the toxicity of Pb and the environmental stability of the perovskites are two major issues that this field is currently facing. In recent years, 2D layered perovskites have emerged as a promising alternative to the traditional 3D perovskites due to their structural flexibility and higher environmental stability, though they lack the desired level of device efficiency.
View Article and Find Full Text PDFAn interfacial coupling origin of the exchange bias effect (EBE) is a novel phenomenon due to its technological and fundamental importance. We have carefully synthesized an FeO@NiO (FO@N) core@shell (CS) nanostructure using a co-precipitation method, and the CS nanostructure formation was evident from the HRTEM analysis. The magnetic measurement study endorses unique characteristics on the temperature-dependent EBE switching from negative to the positive axis under a fixed cooling field.
View Article and Find Full Text PDFA combination of low-cost synthetic route and simplified exfoliation technique to develop high-quality graphene-based sheets with very large lateral dimensions, which are viable to scale up, remains a challenging problem. Herein, super-large graphene oxide (GO) sheets with lateral size up to 104 μm with a surface area of 6831 μm have been developed based on a simple approach using mild heating conditions, and subsequent deoxygenation yields reduced graphene oxide (rGO) sheets. With the decrease in number of layers (<10, <5, bi-layer and mono-layer) in GO, the Raman intensity ratio, / value increases systematically from 0.
View Article and Find Full Text PDFChem Sci
August 2020
Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus 80 Wood Lane W12 0BZ UK
We report the formation of nanoscale particles from the complexation reaction between zinc acetate and ascorbic acid under ambient conditions and in an aqueous medium. The reaction led to the formation of a molecular complex with the formula Zn (AA) (OAc) (, , and = possible smallest positive integer) with AA meaning ascorbate, based on the mass spectrometry results. Following this, the formation of luminescent nanoscale particles - the size of which increased with time - was observed.
View Article and Find Full Text PDFNanoscale Adv
April 2020
Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India.
In this study, a membraneless photofuel cell, namely, μ-DropFC, was designed and developed to harvest chemical and solar energies simultaneously. The prototypes can also perform environmental remediation to demonstrate their multitasking potential as a sustainable hybrid device in a single embodiment. A hydrogen peroxide (HO) microdroplet at optimal pH and salt loading was utilized as a fuel integrated with Al as an anode and zinc phthalocyanine (ZnPC)-coated Cu as a cathode.
View Article and Find Full Text PDFProteins are very effective capping agents to synthesize biocompatible metal nanomaterials . Reduction of metal salts in the presence of a protein generates very different types of nanomaterials (nanoparticles or nanoclusters) at different pH. Can a simple pH jump trigger a transformation between the nanomaterials? This has been realized through the conversion of silver nanoparticles (AgNPs) into highly fluorescent silver nanoclusters (AgNCs) a pH-induced activation with bovine serum albumin (BSA) capping.
View Article and Find Full Text PDFNanoscale Adv
September 2019
Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
The rapid increase in the prevalence of antibiotic-resistant bacterial strains poses a global health risk. In this scenario, alternative strategies are needed to combat the alarming rise in multidrug-resistant bacterial populations. For example, metal-incorporated graphene derivatives have emerged as model nanomaterials owing to their intrinsic antibacterial activity together with their biocompatibility.
View Article and Find Full Text PDFThe effect of confining liquid on the properties of copper nanoparticles synthesized by pulsed laser ablation in two organic solvents, methanol and 2-propanol is investigated along with the effect of the laser irradiation time on the synthesized nanoparticles. To understand the role of confining liquids on the formation mechanism of the nanoparticles in different environments, the results obtained in the organic solvents are compared to those obtained in distilled water. The increase in the average size of the nanoparticles from 7-19 nm with the laser irradiation time from 15-60 minutes is accompanied by a shift in the plasmonic peak towards longer wavelength from 606-621 nm, respectively in methanol.
View Article and Find Full Text PDFRSC Adv
February 2019
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227.
Toxic aggregation of tau protein to neurofibrillary tangles (NFTS) is a central pathological event involved in tauopathies. Inhibition of tau protein aggregation can serve as a straightforward therapeutic strategy. However, tau-based therapeutic solutions are not very common.
View Article and Find Full Text PDF