14 results match your criteria: "Indian Institute of Technology Guwahati 781039[Affiliation]"

This study investigated the ability of lactic acid bacteria (LAB) isolated from oranges to use fish by-products (FB) and chicken by-products (CB) as nitrogen sources alternative to yeast extract for lactic acid (LA) production in a papaya by-product medium as a carbon source. Once the fermentation agents had been isolated, they were subjected to biochemical and molecular characterization. Inexpensive nitrogen sources, precisely CB and FB, were prepared, freeze-dried, and yield evaluated.

View Article and Find Full Text PDF

The escalating levels of hazardous pharmaceutical contaminants, specifically nonsteroidal anti-inflammatory drugs (NSAIDs), in groundwater reservoir surfaces and surface waterway systems have prompted substantial scientific interest regarding their potential deleterious effects on both aquatic ecosystems and human health. Extraction of those pollutants from wastewater is quite challenging. Hence, the development of economic, sustainable, and scalable techniques for capturing and removing those pollutants is crucial to ensure water safety.

View Article and Find Full Text PDF

This manuscript reports on the synthesis and characterization of a new polymeric copper complex ([Cu(DMAP)(μ-CO)]I) ·HO and its successful application in C-O and C-S cross coupling reactions for the synthesis of biologically important phenoxypyrimidine and arylthiopyrimidine scaffolds. In an attempt to synthesize [Cu(DMAP)I]I by adopting a procedure reported by Roy with slight modification, the authors discovered a new polymeric Cu-complex that contains μ-CO bridges. The polymeric linear structure of the complex was established using single crystal X-ray analysis.

View Article and Find Full Text PDF

The nature of magnetism in the doubly-diluted spinel ZnTiCoO= (Zn)[TiCo]Ois reported here employing the temperature and magnetic field () dependence of dc susceptibility (), ac susceptibilities (' and″), and heat capacity () measurements. Whereas antiferromagnetic (AFM) Néel temperature= 13.9 K is determined from the peak in the ∂()/∂vsplot, the fit of the relaxation time(determined from the peak in the″ vsdata at different frequencies) to the Power law:=[(-)/]yields the spin glass freezing temperature= 12.

View Article and Find Full Text PDF

Micro phase separation in a thin film of a polymer blend leads to interesting patterns on different substrates. A plethora of studies in this field discussed the effect of the surface energy of the underlying tethered polymer brush or substrate on the final morphology of the polymer blend. The conventional process toward the final morphology is rather slow.

View Article and Find Full Text PDF

Hybrid nanofluids, a new class of nanofluid has the ability to further enhance the thermo-physical properties by balancing the benefits of both kinds of nanomaterials as compared with nanofluids synthesized using only one kind of material. In this work, water-based nanofluids containing suspensions of carbon black (CB)-boron nitride (BN) (mass ratio = 50:50) nanoparticles are synthesized and studied for its rheological properties. The viscosity of CB-BN nanofluids are measured at temperatures between 30 °C-60 °C for volume concentrations 0.

View Article and Find Full Text PDF

Membrane distillation (MD) is a thermally induced membrane separation process that utilizes vapor pressure variance to permeate the more volatile constituent, typically water as vapor, across a hydrophobic membrane and rejects the less volatile components of the feed. Permeate flux decline, membrane fouling, and wetting are some serious challenges faced in MD operations. Thus, in recent years, various studies have been carried out on the modification of these MD membranes by incorporating nanomaterials to overcome these challenges and significantly improve the performance of these membranes.

View Article and Find Full Text PDF

Microenvironment-sensitive fluorescent nucleosides present attractive advantages over single-emitting dyes for sensing inter-biomolecular interactions involving DNA. Herein, we report the rational design and synthesis of triazolyl push-pull fluorophore-labeled uridines via the intermediacy of C5-[4-(2-propynyl(methyl)amino)]phenyl acetylene as a universal linker. The synthesized nucleosides showed interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) features.

View Article and Find Full Text PDF

Two cyanine-based fluorescent probes, ( E)-2-(4-(diethylamino)-2-hydroxystyryl)-3-ethyl-1,1-dimethyl-1 H-benzo[ e]indol-3-ium iodide (L) and ( E)-3-ethyl-1,1-dimethyl-2-(4-nitrostyryl)-1 H-benzo[ e]indol-3-ium iodide (L), have been designed and synthesized. Of these two probes, the twisted-intramolecular-charge-transfer (TICT)-based probe, L, can preferentially self-assemble to form nanoaggregates. L displayed a selective turn-on fluorescence response toward human and bovine serum albumin (HSA and BSA) in ∼100% aqueous PBS medium, which is noticeable with the naked eye, whereas L failed to sense these albumin proteins.

View Article and Find Full Text PDF

Keto-Enol Tautomerization Triggers an Electrophilic Aldehyde Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex.

J Am Chem Soc

December 2017

The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.

Oxygen atom transfer by high-valent enzymatic intermediates remains an enigma in chemical catalysis. In particular, manganese is an important first-row metal involved in key biochemical processes, including the biosynthesis of molecular oxygen (through the photosystem II complex) and biodegradation of toxic superoxide to hydrogen peroxide by superoxide dismutase. Biomimetic models of these biological systems have been developed to gain understanding on the structure and properties of short-lived intermediates but also with the aim to create environmentally benign oxidants.

View Article and Find Full Text PDF

The synthesis of unnatural amino acids with small side-chain functionalities usable for further transformations is highly demanding for the expansion of the genetic code and other possible biotechnological applications. To this end, we wanted to report the utility of an unexplored unnatural amino acid, isothiocyanyl alanine (Ala = Ita), for the synthesis of another class of unnatural amino acids, thioureayl alanines (Ala = Tua). The synthesis of a third class of unnatural amino acids, amino tetrazolyl alanines (Ala = Ata), in a very good yield was subsequently achieved utilizing thioureayl alanines.

View Article and Find Full Text PDF

Much effort has been put forth to develop unnatural, stable, hydrophobic base pairs with orthogonal recognition properties and study their effect on DNA duplex stabilisation. Our continuous efforts on the design of fluorescent unnatural biomolecular building blocks lead us to the synthesis of some triazolyl donor/acceptor unnatural nucleosides via an azide-alkyne 1,3-dipolar cycloaddition reaction as a key step, which we want to report herein. We have studied their photophysical properties and found interesting solvatochromic fluorescence for two of the nucleosides.

View Article and Find Full Text PDF

An exceptional probe comprising indole-3-carboxaldehyde fluorescein hydrazone (FI) performs multiple tasks, namely, disaggregating amyloid β (Aβ) aggregates in different biomarker environments such as cerebrospinal fluid (CSF), Aβ1-40 fibrils, β-amyloid lysozyme aggregates (LA), and U87 MG human astrocyte cells. Additionally, the probe FI binds with Cu(2+) ions selectively, disrupts the Aβ aggregates that vary from few nanometers to micrometers, and prevents their reaggregation, thereby performing disaggregation and modulation of amyloid-β in the presence as well as absence of Cu(2+) ion. The excellent selectivity of probe FI for Cu(2+) was effectively utilized to modulate the assembly of metal-induced Aβ aggregates by metal chelation with the "turn-on" fluorescence via spirolactam ring opening of FI as well as the metal-free Aβ fibrils by noncovalent interactions.

View Article and Find Full Text PDF

Tryparedoxin peroxidase (TryP) is a key enzyme of the trypanothione-dependent metabolism for removal of oxidative stress in leishmania. These enzymes function as antioxidants through their peroxidase and peroxynitrite reductase activities. Inhibitors of this enzyme are presumed to be antilesihmania drugs and structural studies are prerequisite of rational drug design.

View Article and Find Full Text PDF