3,727 results match your criteria: "Indian Institute of Technology Delhi.[Affiliation]"

A tumor microenvironment often presents altered physicochemical characteristics of the extracellular matrix (ECM) including changes in matrix composition, stiffness, protein expression, pH, temperature, or the presence of certain stromal and immune cells. Of these, overexpression of matrix metalloproteinases (MMPs) and extracellular acidosis are the two major hallmarks of cancer that can be exploited for tumor detection. The change in matrix stiffness and the release of certain cytokines (TNF-α) in the tumor microenvironment play major roles in inducing MMP-9 expression in cancerous cells.

View Article and Find Full Text PDF

Automated detection of depression using wavelet scattering networks.

Med Eng Phys

February 2024

School of Mathematics, Physics, and Computing, University of Southern Queensland, Toowoomba 4350, Queensland, Australia. Electronic address:

Today, depression is a common problem that affects many people all over the world. It can impact a person's mood and quality of life unless identified and treated immediately. Due to the hectic and stressful modern life seems to be, depression has become a leading cause of mental health illnesses.

View Article and Find Full Text PDF

The ability to manipulate the dimensions, areal density, and form of substrate-supported Au and Ag nanoparticles (NPs) is highly desirable for utilizing their plasmonic properties in biosensing, photovoltaics, and nanophotonic applications. The transformation of thin films into the substrate-supported nanostructures by solid-state dewetting (SSD), provides an avenue to manipulate the dimensional aspects of nanostructures simply and cost-effectively on a large scale. However, spontaneous agglomeration of the film produces randomly distributed and non-uniform nanostructures that must be controlled.

View Article and Find Full Text PDF

Transplantation of soil from organic field confers disease suppressive ability to conducive soil.

World J Microbiol Biotechnol

February 2024

Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.

Organic agriculture is a sustainable method of farming, and confers disease-suppressing abilities to disease-conducive soils via specialized soil microbiomes. This study aimed at transforming a disease-conducive soil from a conventional field into disease-suppressive soil by inoculating soil from an organic field previously established as "disease-suppressive". The effectiveness of the transformed soil was established with the model plant wheat (Triticum aestivum) grown under natural conditions, with regard to its potential in inhibiting fungal phytopathogens, Rhizoctonia solani and Fusarium oxysporum.

View Article and Find Full Text PDF

The environmental benefits of molecular oxygen as the oxidizing agent in oxidation reactions that synthesize fine chemicals cannot be overstated. Increased interest in developing robust photocatalysts is stimulated by the fact that the current photocatalytic transformation boom has made previously inaccessible synthetic approaches possible. Motivated by enzymatic catalysis, employing a reusable phenalenyl-based photocatalyst, we have successfully developed oxidative dehydrogenation utilizing molecular oxygen as a greener oxidant.

View Article and Find Full Text PDF

Real-time characterization of microresonator dynamics is important for many applications. In particular, it is critical for near-field sensing and understanding light-matter interactions. Here, we report camera-facilitated imaging and analysis of standing wave patterns in optical ring resonators.

View Article and Find Full Text PDF

Secondary aerosols constitute a significant fraction of atmospheric aerosols, yet our understanding of their formation mechanism and fate is very limited. In this work, the secondary organic aerosol (SOA) formation and aging of ambient air of Delhi are studied using a potential aerosol mass (PAM) reactor, an oxidation flow reactor (OFR), coupled with aerosol chemical speciation monitor (ACSM), proton transfer reaction time of flight mass spectrometer (PTR-ToF-MS), and scanning mobility particle sizer with counter (SMPS + C). The setup mimics atmospheric aging of up to several days with the generation of OH radicals.

View Article and Find Full Text PDF

As the biopharmaceutical industry looks to implement Industry 4.0, the need for rapid and robust analytical characterization of analytes has become a pressing priority. Spectroscopic tools, like near-infrared (NIR) spectroscopy, are finding increasing use for real-time quantitative analysis.

View Article and Find Full Text PDF

This study aimed to develop an automatic diagnostic scheme for bruxism, a sleep-related disorder characterized by teeth grinding and clenching. The aim was to improve on existing methods, which have been proven to be inefficient and challenging. We utilized a novel hybrid machine learning classifier, facilitated by the Weka tool, to diagnose bruxism from biological signals.

View Article and Find Full Text PDF

A review on value-addition to plastic waste towards achieving a circular economy.

Sci Total Environ

April 2024

UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia. Electronic address:

Plastic and mixed plastic waste (PW) has received increased worldwide attention owing to its huge rate of production, high persistency in the environment, and unsustainable waste management practices. Therefore, sustainable PW management and upcycling approaches are imperative to achieve the objectives of the United Nations Sustainable Development Goals. Numerous recent studies have shown the application and feasibility of various PW conversion techniques to produce materials with better economic value.

View Article and Find Full Text PDF

An easily synthesizable indole-derived chromofluorogenic probe InNS has been demonstrated for recognition of trivalent metal ions (i. e., Al, Ga, In and Fe).

View Article and Find Full Text PDF

Green chemistry routed sugar press mud for (2D) ZnO nanostructure fabrication, mineral fortification, and climate-resilient wheat crop productivity.

Sci Rep

February 2024

Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India.

Nanotechnology appears to be a promising tool to redefine crop nutrition in the coming decades. However, the crucial interactions of nanomaterials with abiotic components of the environment like soil organic matter (SOM) and carbon‒sequestration may hold the key to sustainable crop nutrition, fortification, and climate change. Here, we investigated the use of sugar press mud (PM) mediated ZnO nanosynthesis for soil amendment and nutrient mobilisation under moderately alkaline conditions.

View Article and Find Full Text PDF

To study the crystallization behavior of polymeric chains under the influence of porosity, the thermal properties of various nonporous and porous poly(ε-caprolactone) (PCL) based constructs were investigated. Porous cross-linked PCL nanocomposite constructs were fabricated utilizing in situ polymerization of CL-based surfactant-free Pickering high internal phase emulsions (HIPEs), stabilized using modified fumed silica nanoparticles (mSiNP) at a minimal concentration of 0.6 wt %.

View Article and Find Full Text PDF

Rapid modern industrialization and urbanization have escalated heavy metal pollution, with palladium (Pd) raising significant concerns due to its extensive usage in catalysis, hydrogen storage, and electronics, thereby imposing substantial risks on the environment and human health. In this study, we report a highly fluorescent indium nanocubes based chemosensor (InNCs) functionalized with perylene tetracarboxylic acid (PTCA) and 4-(pyridyl)ethenyl benzene (PEB). The InNCs exhibited emission maximum at 415 nm (λ ∼ 350 nm) with robust chemical and photo-stability, and acted as a fluorogenic probe for selective recognition of Pd in aqueous medium.

View Article and Find Full Text PDF

Photocatalytic degradation of parabens: A comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant.

Sci Total Environ

April 2024

The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.

The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions.

View Article and Find Full Text PDF
Article Synopsis
  • Charge variations in monoclonal antibody (mAb) therapies are crucial for quality, and current methods for measuring these variations are slow and not suitable for real-time applications.
  • A new tool using Raman spectroscopy and machine learning techniques allows for on-line monitoring and faster analysis of charge variants during production processes.
  • The study shows that a convolutional neural network (CNN) can effectively quantify different charge species and total protein concentration, making it a promising technique for ensuring consistent product quality in mAb manufacturing.
View Article and Find Full Text PDF

Implantation of a phenotypically stable cartilage graft could represent a viable approach for repairing osteoarthritic (OA) cartilage lesions. In the present study, we investigated the effects of modulating the bone morphogenetic protein (BMP), transforming growth factor beta (TGFβ), and interleukin-1 (IL-1) signaling cascades in human bone marrow stromal cell (hBMSC)-encapsulated silk fibroin gelatin (SF-G) bioink. The selected small molecules LDN193189, TGFβ3, and IL1 receptor antagonist (IL1Ra) are covalently conjugated to SF-G biomaterial to ensure sustained release, increased bioavailability, and printability, confirmed by ATR-FTIR, release kinetics, and rheological analyses.

View Article and Find Full Text PDF

Degradation of therapeutic monoclonal antibodies (mAbs) is a major concern as it affects efficacy, shelf-life, and safety of the product. Taurine, a naturally occurring amino acid, is investigated in this study as a potential mAb stabilizer with an extensive analytical characterization to monitor product degradation. Forced degradation of trastuzumab biosimilar (mAb1)-containing samples by thermal stress for 30 min resulted in high-molecular-weight species by more than 65% in sample without taurine compared to the sample with taurine.

View Article and Find Full Text PDF

Gold-Deposited Graphene Nanosheets for Self-Cleaning Graphene Surface-Enhanced Raman Spectroscopy with Superior Charge-Transfer Contribution.

ACS Appl Mater Interfaces

February 2024

Laboratory of Advanced Materials for Energy and Environment, Université Du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada.

The interaction of graphene with metals initiates charge-transfer interaction-induced chemical enhancements, which critically depend on the doping effect from deposited metallic configurations. In this paper, we have explored the gold nanoparticle-decorated monolayer graphene nanosheets for the large graphene-induced Raman enhancement of adsorbed analytes, indicating the surface-enhanced Raman spectroscopy (SERS) capabilities of metal-doped graphene (G-SERS). Here, the systematically sputtered Au thickness optimization procedure revealed noticeable modifications in the graphene Raman spectra and photoluminescence (PL) background quenching, which indicated favorable charge transfer through n-type doping of chemical vapor deposition-grown graphene nanosheets.

View Article and Find Full Text PDF

The synthesis of mixed ligand di-n-butyltin complexes, [(n-BuSnL)SO], 2-4 (HL=2-quinoline/ 1-isoquinoline/ 4-methoxy-2-quinoline carboxylic acid) has been realized by reacting n-BuSn(OMe)OSOMe, 1 a with the corresponding quinaldic acid under solvothermal conditions. The observed transformation of methane sulfonate to sulfate anion represents a rare example of C-S bond cleavage on the organotin scaffolds, n-BuSn(L)OSOMe, which have been identified as en route intermediates by NMR and X-ray crystallography. Analogous reaction when extended with MeSn(OMe)OSOMe, 1 b and HL yields [(MeSn)(L)(OSOMe)], 5 as partially disproportionated product of MeSn(L)OSOMe.

View Article and Find Full Text PDF

Though significant advances have been made in developing therapeutic strategies for cancer, suitable models for mechanistically identifying relevant drug targets and understanding disease progression are still lacking. Most studies are generally performed using two-dimensional (2D) models, since these models can be readily established and allow high throughput assays. However, these models have also been reported as the reason for unreliable pre-clinical information.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (TMDs) have drawn immense interest due to their strong spin-orbit coupling and unique layer number dependence in response to spin-valley coupling. This leads to the possibility of controlling the spin degree of freedom of the ferromagnet (FM) in thin film heterostructures and may prove to be of interest for next-generation spin-based devices. Here, we experimentally demonstrate the odd-even layer dependence of WS nanolayers by measurements of the ultrafast magnetization dynamics in WS/CoFeB thin film heterostructures by using time-resolved Kerr magnetometry.

View Article and Find Full Text PDF

Fe[Formula: see text]Sn[Formula: see text] is a topological kagome ferromagnet that possesses numerous Weyl points close to the Fermi energy, which can manifest various unique transport phenomena such as chiral anomaly, anomalous Hall effect, and giant magnetoresistance. However, the magnetodynamic properties of Fe[Formula: see text]Sn[Formula: see text] have not yet been explored. Here, we report, for the first time, the measurements of the intrinsic Gilbert damping constant ([Formula: see text]), and the effective spin mixing conductance (g[Formula: see text]) of Pt/Fe[Formula: see text]Sn[Formula: see text] bilayers for Fe[Formula: see text]Sn[Formula: see text] thicknesses down to 2 nm, for which [Formula: see text] is [Formula: see text], and g[Formula: see text] is [Formula: see text].

View Article and Find Full Text PDF

Computing binding affinities is of great importance in drug discovery pipeline and its prediction using advanced machine learning methods still remains a major challenge as the existing datasets and models do not consider the dynamic features of protein-ligand interactions. To this end, we have developed PLAS-20k dataset, an extension of previously developed PLAS-5k, with 97,500 independent simulations on a total of 19,500 different protein-ligand complexes. Our results show good correlation with the available experimental values, performing better than docking scores.

View Article and Find Full Text PDF

The remarkable spin-charge interconversion ability of transition metal dichalcogenides (TMDs) makes them promising candidates for spintronic applications. Nevertheless, their potential as spintronic terahertz (THz) emitters (STEs) remains constrained mainly due to their sizable resistivity and low spin Hall conductivity (SHC), which consequently result in modest THz emission. In this work, the TMD PtTe, a type-II Dirac semimetal is effectively utilized to develop efficient STEs.

View Article and Find Full Text PDF