91 results match your criteria: "Indian Institute of Technology(ISM)Dhanbad[Affiliation]"

Enhancement of dynamic characteristics of sand through bio-cementation is one of the prospective ground improvement techniques for sustainable development considering seismic loading scenarios. Microbially induced calcite precipitation (MICP) has already been established as an efficient and low-cost and sustainable bio-cementation technique. In the present study, engineering characteristics of poorly graded standard Ennore sand of India have been improved through the bio-cementation effects of Sporosarcina pasteurii bacteria using the MICP technique.

View Article and Find Full Text PDF

The intrinsic n-type behavior and unavailability of the appropriate p-type doping method for MoS allows only n-type conduction with depletion mode (D-mode) characteristics and forbids the implementation of p-type field-effect transistors (FETs). The D-mode characteristic results in a high off-current (I) at zero gate bias, which limits the usage of MoS FETs for industry-scale (n-channel metal-oxide semiconductor) NMOS/(complementary metal-oxide semiconductor) CMOS-logic-based applications due to significant power dissipation. Both these issues, i.

View Article and Find Full Text PDF
Article Synopsis
  • Altering the reactivity of molecules could resolve current limitations, especially for Donor-Acceptor Cyclopropanes (DACs) which have relied on Lewis acids for activation.
  • Unpolarized alkenes present challenges due to a polarity mismatch with the Lewis acid-mediated zwitterionic intermediate, hindering their coupling.
  • Using photoredox catalysis to leverage the distonic radical cation approach successfully navigates this mismatch, allowing for the formation of highly substituted cyclopentanes and facilitating new pathways to create bicyclo[3.1.1]heptanes through a unique [3σ+2σ] cycloaddition process.
View Article and Find Full Text PDF

The number of solvent molecules present in the system during molecular dynamics is the balancing act between the need to remove the boundary effects present in the system and the computational cost. Application of the telescopic-solvation box scheme during the estimation of the potential of mean force (PMF) can be advantageous in situations where the contribution of solvent far from the site of interest toward the whole PMF is negligible, as previously demonstrated in the case of adaptive steered molecular dynamics and umbrella sampling. This work explores the application of the telescopic-solvation box scheme during enhanced sampling by the stratified adaptive biasing force (ABF) family of methods, including ABF, extended ABF, well-tempered-metadynamics extended ABF, and multiwalker extended ABF.

View Article and Find Full Text PDF

The receptor binding domain (RBD) of SARS-CoV-2 (coronavirus) targets and facilitates the binding with the human ACE2 receptor and is also a target for most monoclonal antibodies for the inhibition process. The emerging mutations in the RBD of SARS-CoV-2 are problematic, as their local and non-local effects can disrupt the binding mechanism of the antibody with the coronavirus's viral protein, thus compromising the antibody's inhibitory function. In this study, we have employed molecular dynamics to elucidate the binding mechanism between human-derived monoclonal antibody, bebtelovimab, and the RBD of the viral spike protein and the effects of mutations on this binding.

View Article and Find Full Text PDF

Since their inception in antibacterial therapy, macrolide-based antibiotics have significantly shaped the evolutionary pathways of pathogenic bacteria, driving them to develop diverse antimicrobial resistance (AMR) mechanisms. Among these, macrolide esterase, commonly referred to as erythromycin esterase, emerged as a critical defense mechanism, enabling bacteria to detoxify macrolides by hydrolyzing the macrolactone ring within the bacterial cell. In this study, we delve into the intricate interactions and conformational dynamics of erythromycin esterase C (EreC), a key member of the Ere enzyme family.

View Article and Find Full Text PDF

The reduction of CO has become a key role in reducing greenhouse gas emissions in efforts to search for long-term responses to climate change. We report a couple of CO-reducing molecular catalysts based on earth-abundant copper complexes. These are [Cu(DPA)(PyNAP)] (1) and [Cu(DPA)(PyQl)] (2) (where, DPA=pyridine-2,6-dicarboxylate, PyNAP=2-(pyridin-2-yl)-1,8-naphthyridine, and PyQl=2-(pyridin-2-yl)quinoline).

View Article and Find Full Text PDF

Synthetic hyperbranched polyesters with potential therapeutic properties were synthesized using the bifunctional polyethylene glycol or PEG with different molecular weights, ca., 4000, 6000, and 20,000 g/mol, and the trifunctional -aconitic acid or TAA. During polycondensation, a fixed amount of PEG was allowed to react with varying amounts of TAA (1:1 and 1:3) to control the branching extents.

View Article and Find Full Text PDF
Article Synopsis
  • * Four compounds (4k, 4m, 4q, and 4t) were found to effectively inhibit growth in the MCF-7 breast cancer cell line at 10 μM concentration, with 4q showing the highest potency at an IC of 4.8 μM.
  • * Investigations into the mechanism of 4q revealed it increases pro-apoptotic BAX protein levels and induces cell death through mitochondrial changes
View Article and Find Full Text PDF

Coal gasification is the most demanding technology, increasing day by day for synthesis gas and chemical production in a clean environment. Coal is a primary source of energy or fuel. India has a high preservation of high-ash coal.

View Article and Find Full Text PDF

Performance analysis of snail shell biomaterials in solar still for clean water production: nature-inspired innovation for sustainability.

Water Sci Technol

June 2024

Department of Mechanical Engineering, Faculty of Engineering, University of Khartoum, 45Al-Nit Avenue, P.O. Box 321, Khartoum, Sudan; Department of Mechanical Engineering, Faculty of Engineering, Sudan University of Science and Technology, Khartoum, Sudan.

In this current investigation, the experimental performance of a solar still basin was significantly enhanced by incorporating snail shell biomaterials. The outcomes of the snail shell-augmented solar still basin (SSSS) are compared with those of a conventional solar still (CSS). The utilization of snail shells proved to facilitate the reduction of saline water and enhance its temperature, thereby improving the productivity of the SSSS.

View Article and Find Full Text PDF

Square planar complexes of Ni(II) and Pd(II) of a new redox-active pentadentate azo-appended 2-aminophenol ligand (HL = ,'-bis(2-hydroxy-3,5-di--butylphenyl)-2,2'-diamino--azobenzene) in three accessible redox levels [amidophenolate(2-), semiquinonate(1-) π radical, and quinone(0)] were synthesized. The coordinated HL(3-) ligand provides four donor sites [two N(iminophenolates), an N'(azo), and an O(phenolate)], while the phenolic OH group remains free in the three complexes. Cyclic voltammetry on complex [Ni(L)] 1 and its corresponding Pd(II) analogue [Pd(L)] 2 in CHCl displayed three redox responses (two oxidative at = 0.

View Article and Find Full Text PDF

α-Ketoglutaric acid-based supramolecular Zn(II) metallogels in ,'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent (i.e., Zn-α-Glu-DMF and Zn-α-Glu-DMSO) were successfully achieved.

View Article and Find Full Text PDF

Advancing a facile one-pot synthetic approach for the fabrication of a hybrid heterojunction photocatalyst remains a significant challenge in research pursuits. Herein, a microsphere-like trinary hybrid nanocomposite has been synthesized (NH/PIn/MAA/Ag). It comprises exfoliated single- and a few-layered Ni(OH) (NH nanosheets), mercaptoacetate-functionalized polyindole (PIn/MAA), and Ag nanoparticles (AgNPs) through an approach.

View Article and Find Full Text PDF

AcrB, a key component in bacterial efflux processes, exhibits distinct binding pockets that influence inhibitor interactions. In addition to the well-known distal binding pocket within the periplasmic domain, a noteworthy pocket amidst the transmembrane (TM) helices serves as an alternate binding site for inhibitors. The bacterial efflux mechanism involves a pivotal functional rotation of the TM protein, inducing conformational changes in each protomer and propelling drugs toward the outer membrane domain.

View Article and Find Full Text PDF

Recent experimental confirmation of spin inertia in ferromagnets positions this well-developed material class as a prime candidate for THz frequency applications. Spin-torque driven critical spin dynamics, such as auto-oscillations, play the central role in many spin-based technologies. Yet, the pressing question on spin inertia's effect on spin-torque driven dynamics in ferromagnets has remained unexplored.

View Article and Find Full Text PDF

Parkinson's disease is a widespread age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain along with the appearance of protein aggregates, termed as "Lewy bodies" in the surviving neuronal cells. The components of Lewy bodies include proteins such as α-synuclein, 14-3-3, Parkin, and LRRK2, along with other cellular organelles, which, in their native state, perform a plethora of vital biological functions within the human biome. Formation of these aggregates renders these components inactive, thereby interfering with homeostasis.

View Article and Find Full Text PDF

, a formidable pathogen renowned for its antimicrobial resistance, poses a significant threat to immunocompromised individuals. In this regard, the MexAB-OprM efflux pump acts as a pivotal line of defense by extruding antimicrobials from bacterial cells. The inner membrane homotrimeric protein MexB captures antibiotics and translocates them into the outer membrane OprM channel protein connected through the MexA adaptor protein.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) remains a viable target for drug development since the discovery of the association of its mutations with Parkinson's disease (PD). G2019S (in the kinase domain) is the most common mutation for LRRK2-based PD. Though various types of inhibitors have been developed for the kinase domain to reduce the effect of the mutation, understanding the working of these inhibitors at the molecular level is still ongoing.

View Article and Find Full Text PDF

Light emission from organoboron compounds of Schiff bases is found to depend strongly on their chemical structure. Two of these compounds (OB1 and OB2), which contain a benzene ring between the Schiff base moieties, exhibit weak fluorescence in methanol, with marked viscosity dependence. Fluorescence lifetimes of these compounds are in picosecond timescale, as determined by femtosecond optical gating (FOG).

View Article and Find Full Text PDF

This study elucidated the mechanism of formation of a tripartite complex containing daptomycin (Dap), lipid II, and phospholipid phosphatidylglycerol in the bacterial septum membrane, which was previously reported as the cause of the antibacterial action of Dap against gram-positive bacteria via molecular dynamics and enhanced sampling methods. Others have suggested that this transient complex ushers in the inhibition of cell wall synthesis by obstructing the downstream polymerization and cross-linking processes involving lipid II, which is absent in the presence of cardiolipin lipid in the membrane. In this work, we observed that the complex was stabilized by Ca-mediated electrostatic interactions between Dap and lipid head groups, hydrophobic interaction, hydrogen bonds, and salt bridges between the lipopeptide and lipids and was associated with Dap concentration-dependent membrane depolarization, thinning of the bilayer, and increased lipid tail disorder.

View Article and Find Full Text PDF

Aerobic reaction between the pyridine-2-carboxamide-2-aminophenol NO ligand (HL) and Zn(ClO)·6HO in CHCN affords an N phenoxazinylate coordinated Zn(II) complex; its diradical electronic structure [Zn{(L*)˙}] has been elucidated from redox, spectroscopic (UV-VIS and EPR), and magnetic measurements and DFT calculations. Isolation and characterization of the metal-assisted redox-driven modified N ligand as a radical cation (HL*)˙ and its Ni(II)-diradical complex [Ni{(L*)˙}] have also been achieved.

View Article and Find Full Text PDF

In this study, we suggest an optimal imputation strategy for the elevated estimation of the population mean of the primary variable utilizing the known auxiliary parameters for the missing observations. Under this strategy, we suggest a new modified Searls type estimator, and we study its sampling properties, mainly bias and mean squared error (MSE), for an approximation of order one. The introduced estimator is compared theoretically with the estimators of population mean in competition under the imputation method.

View Article and Find Full Text PDF

Present investigation includes the magnetizing roasting of low-grade iron ore fines followed by grinding and beneficiation using magnetic separation. The hematite iron ore used in the investigation contains 53.17% T Fe, 10.

View Article and Find Full Text PDF