20,128 results match your criteria: "Indian Institute of Science.[Affiliation]"

This study presents the synthesis of a green polymer-based nanocomposite by incorporating green CuO nanoparticles into polyaniline (PANI) for the adsorption of Pb (II) ions from contaminated water. The nanocomposite was extensively characterized using FTIR, XRD, BET, SEM-EDX, XPS, and Raman spectroscopy, both before and after Pb(II) adsorption. Optimization studies were performed to assess the effects of key parameters, including pH, adsorbent dosage, and initial ion concentration on the adsorption process.

View Article and Find Full Text PDF

Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.

View Article and Find Full Text PDF

Introduction: Disease-related malnutrition is common but often underdiagnosed in patients with chronic gastrointestinal diseases, such as liver cirrhosis, short bowel and intestinal insufficiency, and chronic pancreatitis. To improve malnutrition diagnosis in these patients, an evaluation of the current Global Leadership Initiative on Malnutrition (GLIM) diagnostic criteria, and possibly the implementation of additional criteria, is needed.

Aim: This study aimed to identify previously unknown and potentially specific features of malnutrition in patients with different chronic gastrointestinal diseases and to validate the relevance of the GLIM criteria for clinical practice using machine learning (ML).

View Article and Find Full Text PDF

Weyl semimetals are a novel class of topological materials with unique electronic structures and distinct properties. HfRhGe stands out as a noncentrosymmetric Weyl semimetal with unconventional superconducting characteristics. Using muon-spin rotation and relaxation (µSR) spectroscopy and thermodynamic measurements, a fully gapped superconducting state is identified in HfRhGe that breaks time-reversal symmetry at the superconducting transition.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).

View Article and Find Full Text PDF

Regulation of pathway choice in DNA repair after double-strand breaks.

Curr Opin Pharmacol

December 2024

Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India; Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India. Electronic address:

DNA damage signaling is a highly coordinated cellular process which is required for the removal of DNA lesions. Amongst the different types of DNA damage, double-strand breaks (DSBs) are the most harmful type of lesion that attenuates cellular proliferation. DSBs are repaired by two major pathways-homologous recombination (HR), and non-homologous end-joining (NHEJ) and in some cases by microhomology-mediated end-joining (MMEJ).

View Article and Find Full Text PDF

A Pd (II)-catalyzed direct C3-(sp)-H alkenylation of heteroarenes using benzothiazole as a directing group was successfully achieved. A wide range of 2--alkylpyrroles undergo an oxidative coupling with a variety of acrylates to furnish highly regio- and chemoselective E-alkenylation products at the C3 position. An important intermediate complex has been isolated and characterized so as to have an insight into the mechanism.

View Article and Find Full Text PDF

The superior colliculus directs goal-oriented forelimb movements.

Cell Rep

December 2024

Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India. Electronic address:

Skilled forelimb control is essential for daily living, yet our understanding of its neural mechanisms, although extensive, remains incomplete. Here, we present evidence that the superior colliculus (SC), a major midbrain structure, is necessary for accurate forelimb reaching in mice. We found that neurons in the lateral SC are active during goal-directed reaching, and by employing chemogenetic and phase-specific optogenetic silencing of these neurons, we show that the SC causally facilitates reach accuracy.

View Article and Find Full Text PDF

Light-Triggered Reversible Assembly of Halide Perovskite Nanoplatelets.

Adv Mater

December 2024

Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.

Advancements in stimuli-driven nanoactuators necessitate the discovery of photo-switchable, self-contained semiconductor nanostructures capable of precise mechanical responses. The reversible assembly of 0D CsBiI halide perovskite nanoplatelets (NPLs) between stacked and scattered configurations are demonstrated under light and dark, respectively. This sunlight-triggered perpetual flipping of the NPLs, occurring in less than a minute, is associated with a color change between brown and red.

View Article and Find Full Text PDF

Understanding RNA-protein interactions is crucial for uncovering the mechanisms of cellular processes and can provide insights into the basis of various diseases, paving the way for the development of targeted therapeutic interventions. Exposure to stress conditions, such as hypoxia, leads to a drop in intracellular pH, which, in turn, alters the ionization states of amino acid residues and RNA bases, affecting the charge distribution and electrostatic interactions between RNA and proteins. In addition, pH also perturbs the structure and dynamics of proteins via the disruption of H-bonds and ionic interactions.

View Article and Find Full Text PDF

DNA methylation repatterning is an epigenomic component of plant stress response, but the extent that methylome data can elucidate changes in plant growth following stress onset is not known. We applied high-resolution DNA methylation analysis to decode plant responses to short- and long-term high light stress and, integrating with gene expression data, attempted to predict components of plant growth response. We identified 105 differentially methylated genes (DMGs) following 1 h of high light treatment and 193 DMGs following 1 week of intermittent high light treatment.

View Article and Find Full Text PDF

A stoichiometric cubic phase of zinc bismuth oxide ZnBiO (ZBO) is introduced as an anode for rechargeable Na-ion batteries. ZBO is synthesized using a coprecipitation method and characterized by various physicochemical techniques. Pristine ZBO shows a high cyclability in an ether-based electrolyte due to the formation of a robust interphase coupled with high Na conductivity.

View Article and Find Full Text PDF

Chiral metal clusters, due to their intriguing optical properties and unique resemblance in size to biomolecules, have attracted a lot of attention in recent times as potential candidates for application in bio-detection and therapy. While several strategies are reported for the synthesis of optically active clusters, a facile approach that enhances a multitude of properties has remained a challenge. Herein, we report a simple strategy wherein the use of a chiral cationic surfactant, during the synthesis of achiral clusters, leads to the fabrication of chiral assemblies possessing enhanced luminescence and optical activity.

View Article and Find Full Text PDF

Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In , PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells.

View Article and Find Full Text PDF

Reversibly crosslinked polymer networks - polymer networks that can undergo bond association and dissociation reactions - rearrange their structures while maintaining their overall integrity, thus resulting in unique properties such as self-healing, reprocessability, shape memory and adaptability. Here, we show that the introduction of crosslinks, whether reversible or permanent, directly impacts the equilibrium polymer density and hence the material's surface tension. For a limiting case where the bonds are the same size as the polymer chain bonds, simulations, Flory hypotheses and thermodynamic calculations show that the crosslinks induce an increased entropic cohesion in the liquid.

View Article and Find Full Text PDF

A practical and efficient reaction for C2-selenylation of 1,4-naphthoquinones has been explored. This coupling reaction of two redox structural motifs, such as 2-bromo-1,4-naphthoquinone with diaryldiselenide / ebselen has been achieved by using sodium borohydride reducing agent at room temperature. Using this approach, several 2-selenylated-1,4-naphthoquinones were obtained in moderate to good yields and thoroughly characterized by multinuclear (1H, 13C, and 77Se) NMR, cyclic voltammetry, and mass spectrometry.

View Article and Find Full Text PDF

The recent surge in emerging viral infections warrants the design of broad-spectrum antivirals. We aim to develop a lead molecule that targets a common biochemical feature of many enveloped viruses, membrane fusion. To achieve the broad-spectrum ability, instead of targeting the fusion machinery, we plan to modulate the physicochemical properties of the host and viral membranes to block fusion.

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) can decipher fine details that are otherwise impossible using diffraction-limited microscopy. Often, the reconstructed super-resolved images suffer from noise, strong background and are prone to false detections that may impact quantitative imaging. To overcome these limitations, we propose a technique (corrSMLM) that recognizes and detects fortunate molecules (molecules with long blinking cycles) from the recorded data.

View Article and Find Full Text PDF

The neural mechanisms of the affective-motivational symptoms of chronic pain are poorly understood. In chronic pain, our innate coping mechanisms fail to provide relief. Hence, these behaviors are manifested at higher frequencies.

View Article and Find Full Text PDF

Harnessing RNA-Protein Interactions for Therapeutic Interventions.

Chem Asian J

December 2024

IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Dept of Chemistry, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Bhopal, INDIA.

Interactions between RNAs and proteins play a crucial role in various diseases, including viral infections and cancer. Hence, understanding and inhibiting these interactions are important for the development of novel therapeutics. However, the identification of drugs targeting RNA-protein interactions with high specificity and affinity is challenged by our limited molecular understanding of these interactions.

View Article and Find Full Text PDF

In this study, we investigated the aggregation-induced delayed fluorescence (AIDF) properties of three luminogens - TN, TA, and TP. Our comprehensive theoretical analysis reveals a significant reduction in the Δ in their aggregated or solid-state, activating TADF, on a ∼μs time-scale. Additionally, these luminogens demonstrate two-photon excited anti-Stokes photoluminescence emission and improved photocurrent generation, attributed to their strong charge transfer characteristics and longer singlet exciton lifetimes.

View Article and Find Full Text PDF

Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature.

View Article and Find Full Text PDF

The efficient removal of 99TcO4- from alkaline nuclear waste is vital for optimizing nuclear waste management and safeguarding the environment. However, current state-of-the-art sorbent materials are constrained by their inability to simultaneously achieve high alkali resistance, rapid adsorption kinetics, large adsorption capacity, and selectivity. In this study, we synthesized a urea-rich cationic porous organic polymer, IPM-403, which demonstrates exceptional chemical stability, ultrafast kinetics (~92% removal within 30 seconds), high adsorption capacity (664 mg/g), excellent selectivity, along with multiple-cycle recyclability (up to 7 cycles), making it highly promising for the removal of ReO4- (surrogate of 99TcO4-) from nuclear wastewater.

View Article and Find Full Text PDF

Two-dimensional (2D) chiral hybrid perovskites A2PbI4 (A: chiral organic ion) enable chirality controlled optoelectronic and spin-based properties. A+ organic sublattice induces chirality into the semiconducting [PbI4]2- inorganic sublattice through non-covalent interactions at organic-inorganic interface. Often, the A+ cations in the lattice have different orientations, leading to asymmetry in the non-covalent interactions.

View Article and Find Full Text PDF