5 results match your criteria: "Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura[Affiliation]"

The photoluminescence properties of quantum dots (QDs) are often enhanced by eliminating surface trap states through chemical methods. Alternatively, a physical approach is presented here for improving photoluminescence purity in QDs by employing frequency-specific plasmon resonance coupling. Emitter-bound plasmonic hybrids are designed by electrostatically binding negatively charged QDs in water to positively charged gold nanoparticles having a thin polymer coating.

View Article and Find Full Text PDF

The initial stages of amyloid fibrilization begin with the monomers populating aggregation-prone conformers. Characterization of such aggregation-prone conformers is crucial in the study of neurodegenerative diseases. The current study characterizes the aggregation pathway of two tau protein constructs that have been recently demonstrated to form Alzheimer's (AD) fibril structures with divalent ions and chronic traumatic encephalopathy (CTE) fibril structures with monovalent ions.

View Article and Find Full Text PDF

The phenomenon of excited-state symmetry breaking is often observed in multipolar molecular systems, significantly affecting their photophysical and charge separation behavior. As a result of this phenomenon, the electronic excitation is partially localized in one of the molecular branches. However, the intrinsic structural and electronic factors that regulate excited-state symmetry breaking in multibranched systems have hardly been investigated.

View Article and Find Full Text PDF

A robust doping strategy of Mn ions in CdSe QDs has been developed in aqueous medium with mild microwave irradiation using the short-chain capping ligand 3-MPA. The concentration of the dopant is varied stoichiometrically in order to measure its effect on the conductivity of QD solids for further potential applications in the future. The synthesis parameters of CdSe QDs have been optimized to produce a uniform size among various samples to decouple the doping dependent conductivity from their bandgap.

View Article and Find Full Text PDF

Theoretical design and experimental realization of novel nanoporous architectures in carbon membranes has been a success story in recent times. Research on graphynes, an interesting class of materials in carbon flatland, has contributed immensely to this success story. Graphyne frameworks possessing sp and sp hybridized carbon atoms offer a variety of uniformly distributed nanoporous architectures for applications ranging from water desalination, gas separation, and energy storage to catalysis.

View Article and Find Full Text PDF