5 results match your criteria: "Indian Institute of Science Education and Research Pune 411008 India.[Affiliation]"

The development of long-lasting plasma membrane (PM) and basement membrane (BM) probes is in high demand to advance our understanding of membrane dynamics during differentiation and disease conditions. Herein, we report that the microheterogeneity of heparan sulfate (HS) on fluorescent neo-proteoglycans backbone offers a facile platform for designing membrane probes. Confocal live-cell imaging studies of cancer and normal cell lines with a panel of Cy5 fluorescently tagged neo-proteoglycans confirmed that highly sulfated HS ligands with an l-iduronic acid component (PG@ID-6) induce a prolonged and brighter expression on the PM compared to low-sulfated and uronic acid counterparts.

View Article and Find Full Text PDF

A series of -benzoylanthranilamide derivatives have been synthesized with the substitution of competitive HB acceptors and investigated by NMR spectroscopy and single crystal XRD. The interesting rivalry for HB acceptance between [double bond splayed left]C[double bond, length as m-dash]O and X (F or OMe) is observed in the investigated molecules which leads to an unusual increase in the electron density at the site of one of the NH protons, reflecting in the high field resonance in the H NMR spectrum. The NMR experimental findings and single crystal XRD are further reinforced by the DFT studies.

View Article and Find Full Text PDF

The aberrant expression of endocytic epidermal growth factor receptors (EGFRs) in cancer cells has emerged as a key target for therapeutic intervention. Here, we describe for the first time a state-of-the-art design for a heparan sulfate (HS) oligosaccharide-based nanovehicle to target EGFR-overexpressed cancer cells in cellular heterogeneity. An ELISA plate IC inhibition assay and surface plasma resonance (SPR) binding assay of structurally well-defined HS oligosaccharides showed that 6--sulfation (6--S) and 6--phosphorylation (6--P) of HS tetrasaccharides significantly enhanced EGFR cognate growth factor binding.

View Article and Find Full Text PDF

The next-generation indium-based lead-free halide material CsInAgCl is promising for photovoltaic applications due to its good air stability and non-toxic behavior. However, its wide bandgap (>3 eV) is not suitable for the solar spectrum and hence reduces its photoelectronic efficiency for device applications. Here we report a significant bandgap reduction from 2.

View Article and Find Full Text PDF

Herein, carbon nanosphere-decorated vanadium pentoxide (C@VO) hybrid nanobelts were grown a single step hydrothermal route with improved electronic conductivity as compared to that of pristine oxide. This hybrid nanomaterial exhibits different complimentary ranges of optimum post-growth annealing temperatures, which are suitable for dual applications either in electro-chromic smart windows or in supercapacitors. C@VO nanobelts annealed at 350 °C appear to favor electro-chromic applications.

View Article and Find Full Text PDF