46 results match your criteria: "Indian Institute of Petroleum and Energy[Affiliation]"

A comprehensive evaluation of the integrated photocatalytic-fixed bed bioreactor system for the treatment of Acid Blue 113 dye.

Bioresour Technol

November 2022

Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India. Electronic address:

This work investigated the performance of the integrated system (i.e., a Photocatalytic reactor followed by a Fixed bed bioreactor (PC-FBR)) for the degradation of complex Acid Blue 113 from wastewater.

View Article and Find Full Text PDF

The increasing threats of oxo-anions in drinking water have posed a serious threat to human health, aquatic environment, ecology, and sustainability. Accordingly, developments of cost-effective and sustainable nanomaterials for water remediation are on top priority and highly sought in global research community. Carbon nano-onions (CNOs) are one of the emerging nanomaterials for water purification because of its unique morphology, surface reactivity, high density of surface-active sites, and microporous structure.

View Article and Find Full Text PDF

Sustainable bio-economics can be achieved by the processing of renewable biomass resources. Hence, this review article presents a detailed analysis of the effect of susceptors on microwave-assisted pyrolysis (MAP) of biomass. Biomass is categorized as lignocellulosic and algal biomass based on available sources.

View Article and Find Full Text PDF

Sustainable production of potable water is one of the United Nations sustainable development goals set for 2030. Among available renewable energy resources, solar energy is abundantly available in most of the fresh water scarce rural and remote locations. Moreover, solar distillation units and solar photovoltaic (PV) modules have been acknowledged as suitable candidates for addressing rising fresh water and electricity demands in these regions.

View Article and Find Full Text PDF

The pandemic caused by SARS-CoV-2 (SCoV-2) has impacted the world in many ways and the virus continues to evolve and produce novel variants with the ability to cause frequent global outbreaks. Although the advent of the vaccines abated the global burden, they were not effective against all the variants of SCoV-2. This trend warrants shifting the focus on the development of small molecules targeting the crucial proteins of the viral replication machinery as effective therapeutic solutions.

View Article and Find Full Text PDF

Current technologies and future perspectives for the treatment of complex petroleum refinery wastewater: A review.

Bioresour Technol

July 2022

Department of Chemical Engineering, Institute of Chemical Technology, Mumbai-Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India; Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam, Andhra Pradesh 530003, India. Electronic address:

Petroleum refinery wastewater (PRW) is a complex mixture of hydrocarbons, sulphides, ammonia, oils, suspended and dissolved solids, and heavy metals. As these pollutants are toxic and recalcitrant, it is essential to address the above issue with efficient, economical, and eco-friendly technologies. In this review, initially, an overview of the characteristics of wastewater discharged from different petroleum refinery units is discussed.

View Article and Find Full Text PDF

N-Doped Carbon Nanorods from Biomass as a Potential Antidiabetic Nanomedicine.

ACS Biomater Sci Eng

May 2022

Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.

Insufficient glucose control remains a critical challenge for type 2 diabetes mellitus (T2DM) patients with currently used therapeutic drugs, which can also have detrimental side effects. The facile synthesis of nitrogen-doped carbon nanorods (N-CNRs) as therapeutic agents in a T2DM transgenic db/db mouse model is reported herein. N-CNRs are synthesized from silkworm powder without the assistance of any template and possess a hollow graphitic nature, rough surface, and good aqueous solubility, which make them ideal candidates for fabricating nanomedicines.

View Article and Find Full Text PDF

The world has witnessed the circumstances shaped by the oil spill for many decades that cause serious environmental problems and adverse effects on human health. Many techniques and remediation methods are followed for efficient oil spill cleanups but with the limitations and environmental issues, these procedures were not completely efficient. The "nanotechnology" word itself has fascinated not only the researchers but also many industries and the global race is on to tap its potential and to derive benefit from it.

View Article and Find Full Text PDF

Dyes are an important class of organic pollutants and are well known for their adverse effects on aquatic life and human beings. In this work, an effort has been made to treat the dye-containing wastewater using modified biocarriers in packed bed bioreactors (PBBRs). Lysinibacillus sp.

View Article and Find Full Text PDF

In this work, an effort has been made to design the process variables and to analyse the impact of mixing intensity on mass transfer diffusion in a moving bed biofilm reactor (MBBR). A lab-scale MBBR, filled with Bacillus cereus GS2 IIT (BHU) immobilized-polyethylene biocarriers, was employed to optimize the process variables, including mixing intensity (60-140 rpm), phenol concentration (50-200 mg/L), and hydraulic retention time (HRT) (4-24 h) using response surface methodology. The optimum phenol removal of 87.

View Article and Find Full Text PDF

Removal of gaseous benzene by a fixed-bed system packed with a highly porous metal-organic framework (MOF-199) coated glass beads.

Environ Res

May 2022

Center for Environmental and Energy Research (CEER) - Engineering of Materials Via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840 South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B.9000, Belgium.

The utility of nanomaterial adsorbents is often limited by their physical features, especially fine particle size. For example, a large bed-pressure drop is accompnied inevitably, if fine-particle sorbents are used in a packed bed system. To learn more about the effect of adsorbent morphology on uptake performance, we examined the adsorption efficiency of metal-organic framework 199 (MOF-199) in the pristine (fine powder) form and after its binding on to glass beads as an inert support.

View Article and Find Full Text PDF

A simpler approach of functionalization for the fabrication of thiourea-functionalized-Graphene Aerogel (t-GA) is described here. Graphene Aerogel (GA) was synthesized from bio-mass, which on a simpler oxidative treatment get converted to its water-soluble version due to the impregnation of several oxygenous functionalities like carboxylic, hydroxyl, etc. Further, these carboxylated groups have been functionalized with the molecules of thiourea using the long known dicyclohexylcarbodiimide (DCC) as a coupling agent.

View Article and Find Full Text PDF

Paralog- and ortholog-specificity of inhibitors of human and mouse lipoxygenase-isoforms.

Biomed Pharmacother

January 2022

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany. Electronic address:

Lipoxygenases (ALOX-isoforms) are lipid peroxidizing enzymes, which have been implicated in cell differentiation and maturation but also in the biosynthesis of lipid mediators playing important roles in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. In mammals these enzymes are widely distributed and the human genome involves six functional genes encoding for six distinct human ALOX paralogs. In mice, there is an orthologous enzyme for each human ALOX paralog but the catalytic properties of human and mouse ALOX orthologs show remarkable differences.

View Article and Find Full Text PDF

Herein, a simpler-viable methodology for the surface decoration of pear fruit derived graphene aerogel (GA) via cadmium sulfide (CdS) has been presented. GA can be easily synthesized from bio-mass, which provide an economic advantage. Surface decoration via CdS imparts photocatalytic activities in functionalized graphene aerogels (f-GA).

View Article and Find Full Text PDF

Oxygenation of endocannabinoids by mammalian lipoxygenase isoforms.

Biochim Biophys Acta Mol Cell Biol Lipids

June 2021

Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany.

Endocannabinoids, such as anandamide (ANA) and 2-arachidonoylglycerol (2AG), are lipid-signaling molecules that can be oxidized by lipid-peroxidizing enzymes, and this oxidation alters the bioactivity of these lipid mediators. Here, under strictly comparable experimental conditions, we explored whether ANA and 2AG function as substrates for four human (ALOX15, ALOX15B, ALOX12, ALOX5) and three mice Alox isoforms (Alox15, Alox12, Alox5) and compared the rates of product formation with those of arachidonic acid oxygenation. Except for ALOX5, the two endocannabinoids were more efficiently oxygenated than arachidonic acid by human ALOX isoforms.

View Article and Find Full Text PDF

N, S, and P-Co-doped Carbon Quantum Dots: Intrinsic Peroxidase Activity in a Wide pH Range and Its Antibacterial Applications.

ACS Biomater Sci Eng

October 2020

Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, South Korea.

Nanozymes have drawn significant scientific interest due to their high practical importance in terms of overcoming the instability, complicated synthesis, and high cost of protein enzymes. However, their activity is generally limited to particular pHs, especially acidic ones. Herein, we report that luminescent N, S, and P-co-doped carbon quantum dots (NSP-CQDs) act as attractive peroxidase mimetics in a wide pH range, even at neutral pH, for the peroxidase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO.

View Article and Find Full Text PDF

The present study reports the multifunctional anticancer activity against B16F10 melanoma cancer cells and the bioimaging ability of fluorescent nitrogen-phosphorous-doped carbon dots (NPCDs). The NPCDs were synthesized using a single-step, thermal treatment and were characterized by TEM, XPS, fluorescence and UV-Vis spectroscopy, and FTIR analysis. The anticancer efficacy of NPCDs was confirmed by using cell viability assay, morphological evaluation, fluorescent live-dead cell assay, mitochondrial potential assay, ROS production, RT-PCR, western-blot analysis, siRNA transfection, and cellular bioimaging ability.

View Article and Find Full Text PDF

Wound and its treatment is one of the major health concerns throughout the globe. Various extrinsic and intrinsic factors can influence the dynamics of healing mechanism. One such extrinsic factor is moist environment in wound healing.

View Article and Find Full Text PDF

Autophagy is a degradative pathway associated with many pathological and physiological processes crucial for cell survival. During ER stress, while selective autophagy occurs via ER-phagy, the re-establishment of physiologic ER homeostasis upon resolution of a transient ER stress is mediated by recovER-phagy. Recent studies demonstrated that recovER-phagy is governed via association of Sec62 as an ER-resident autophagy receptor through its autophagy interacting motifs (AIM)/LC3-interacting region (LIR) toAtg8/LC3.

View Article and Find Full Text PDF

Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals.

Front Chem

September 2018

Department of Chemical Engineering, Bioresource Processing Research Institute of Australia, Monash University, Clayton, VIC, Australia.

Cellulose Nanocrystals (CNC) are explored to stabilize oil/water emulsions for their ability to adsorb at the oil/water interface. In this work, the role of electrostatic forces in the CNC ability to stabilize oil/water emulsions is explored using canola oil/water and hexadecane/water as model systems. Canola oil/water and Hexadecane/ water (20/80, v/v) emulsions were stabilized with the addition of CNCs using ultrasonication.

View Article and Find Full Text PDF

Novel In-situ Precipitation Process to Engineer Low Permeability Porous Composite.

Sci Rep

July 2018

Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Australia.

Inspired by the natural precipitation of minerals in soil and rocks, a novel, simple and industrially scalable in-situ precipitation process to produce low permeability porous composites is presented. This process relies on capillary flow in wettable porous composites to absorb and store liquid. In this process, a porous composite first absorbs a salt solution, after which the composite is dipped in a second salt solution.

View Article and Find Full Text PDF