4 results match your criteria: "Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research[Affiliation]"

Article Synopsis
  • - Sheath blight disease in rice, caused by the fungus Rhizoctonia solani AG1-IA, leads to significant losses in yield and quality, making the discovery of resistance genes crucial for effective management.
  • - A study utilizing RNA sequencing on six diverse rice genotypes identified 352 differentially expressed genes related to sheath blight resistance, with a focus on one gene, Oschib1, linked to resistance variations.
  • - The Oschib1 gene, which encodes a classIII chitinase, was cloned from a resistant rice type and over-expressed in a susceptible variety, resulting in increased resistance to the fungus, demonstrating a dose-dependent effect on the plant's defense response.
View Article and Find Full Text PDF

The development of nutrient-use efficient rice lines is a priority amidst the changing climate and depleting resources viz., water, land, and labor for achieving sustainability in rice cultivation. Along with the traditional transplanted irrigated system of cultivation, the dry direct-seeded aerobic system is gaining ground nationwide.

View Article and Find Full Text PDF

AG1-1A is a necrotrophic fungus that causes sheath blight disease in rice. The reliable resistant source against this phytopathogenic fungus is not available in the gene pool of rice. Better understanding of pathogen genomics and gene regulatory networks are critical to devise alternate strategies for developing resistance against this noxious pathogen.

View Article and Find Full Text PDF

RPHR-1005, the stable restorer line of the popular medium slender (MS) grain type rice hybrid, DRRH-3 was improved in this study for resistance against bacterial blight (BB) and blast diseases through marker-assisted backcross breeding (MABB). In this study, four major resistance genes (i.e.

View Article and Find Full Text PDF