187 results match your criteria: "Indian Agricultural Research Institute IARI[Affiliation]"

A greater energy grant in diesel-fed machinery driven farming substantiate the higher GHGs emission along with improper input (fertilizer, pesticide and irrigation) use and intensive soil management. Practicing conservation tillage, residue retention and diversified crop rotations were advocated because of their multiple benefits. Hence we explored the energy requirement and carbon footprint of conservation agriculture (CA) based maize production systems.

View Article and Find Full Text PDF

Plant height (PH) and plant width (PW), two of the major plant architectural traits determining the yield and productivity of a crop, are defined by diverse morphometric characteristics of the shoot apical meristem (SAM). The identification of potential molecular tags from a single gene that simultaneously modulates these plant/SAM architectural traits is therefore prerequisite to achieve enhanced yield and productivity in crop plants, including chickpea. Large-scale multienvironment phenotyping of the association panel and mapping population have ascertained the efficacy of three vital SAM morphometric trait parameters, SAM width, SAM height and SAM area, as key indicators to unravel the genetic basis of the wide PW and PH trait variations observed in desi chickpea.

View Article and Find Full Text PDF

The effect of vacuum packing and ambient storage conditions on the stability of the β-carotene in the transgenic Golden Rice® lines was studied. The β-carotene was quantified using RP-HPLC at bimonthly intervals for a period of six months. The β-carotene concentration in the genotypes analyzed ranged from 7.

View Article and Find Full Text PDF

Waxy corn is popular beacuse of its high amylopectin due to mutation in or () gene. Here, we characterized the allele among 24 diverse waxy inbreds using gene-based markers. A total of 29 alleles with average of 1.

View Article and Find Full Text PDF

Genetic mapping identified large number of epistatic interactions indicating the complex genetic architecture for stem rot disease resistance. Groundnut (Arachis hypogaea) is an important global crop commodity and serves as a major source of cooking oil, diverse confectionery preparations and livestock feed. Stem rot disease caused by Sclerotium rolfsii is the most devastating disease of groundnut and can cause up to 100% yield loss.

View Article and Find Full Text PDF

Development of leaf rust-resistant cultivars is a priority during wheat breeding, since leaf rust causes major losses in yield. Resistance against leaf rust due to Lr genes is partly controlled by epigenetic modifications including histone acetylation that is known to respond to biotic/abiotic stresses. In the present study, enrichment of H3K4ac and H3K9ac in promoters of six defense responsive genes (N-acetyltransferase, WRKY 40, WRKY 70, ASR1, Peroxidase 12 and Sarcosine oxidase) was compared with their expression in a pair of near-isogenic lines (NILs) for the gene Lr28 following inoculation with leaf rust pathotype '77-5'; ChIP-qPCR was used for this purpose.

View Article and Find Full Text PDF
Article Synopsis
  • Leaf rust disease is a significant threat to wheat yields globally, prompting research into the Lr28 gene's role in seedling resistance.
  • The study utilized high-throughput RNA sequencing to analyze gene expression in two near-isogenic wheat lines, revealing how Lr28 influences a wide range of genes at different time points after pathogen inoculation.
  • Findings indicated that genes related to metabolism, stress response, and signaling were notably affected, and the results could aid in breeding wheat varieties that are resistant to leaf rust.
View Article and Find Full Text PDF

The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.

View Article and Find Full Text PDF

Genomic selection (GS) by selecting lines prior to field phenotyping using genotyping data has the potential to enhance the rate of genetic gains. Genotype × environment (G × E) interaction inclusion in GS models can improve prediction accuracy hence aid in selection of lines across target environments. Phenotypic data on 320 chickpea breeding lines for eight traits for three seasons at two locations were recorded.

View Article and Find Full Text PDF

The sporophytic system of self-incompatibility is a widespread genetic phenomenon in plant species, promoting out-breeding and maintaining genetic diversity. This phenomenon is of commercial importance in hybrid breeding of crops and is controlled by single locus with multiple haplotypes. The molecular genetic studies of '' locus has revealed the presence of three tightly linked loci viz.

View Article and Find Full Text PDF

Given the increasing scarcity of production resources such as water, energy and labour coupled with growing climatic risks, maize-based production systems could be potential alternatives to intensive rice-wheat (RW) rotation in western Indo-Gangetic Plains (IGP). Conservation agriculture (CA) in maize systems has been widely promoted for minimizing soil degradation and ensuring sustainability under emerging climate change scenario. Such practices are also believed to provide mitigation co-benefits through reduced GHG emission and increased soil carbon sequestration.

View Article and Find Full Text PDF

Epilepsy is a chronic neurological disorder which affects 65 million worldwide population and characterized by recurrent seizure in epileptic patients. Recently, we reported a novel piperonylpiperazine derivative, BPPU "1-[4-(4-benzo [1,3]dioxol-5-ylmethyl-piperazin-1-yl)- phenyl]-3-phenyl-urea'' as a potent anticonvulsant agent. BPPU has shown excellent anticonvulsant activity in various in-vivo seizure models along with good anti-depressant activity.

View Article and Find Full Text PDF

Pearl millet is a climate-resilient nutritious crop requiring low inputs and is capable of giving economic returns in marginal agro-ecologies. In this study, we report large-effect iron (Fe) and zinc (Zn) content quantitative trait loci QTLs) using diversity array technology (DArT) and simple sequence repeats (SSRs) markers to generate a genetic linkage map using 317 recombinant inbred line (RIL) population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross. The base map [seven linkage groups (LGs)] of 196 loci was 964.

View Article and Find Full Text PDF

Understanding the genetic basis of photosynthetic efficiency (PE) contributing to enhanced seed yield per plant (SYP) is vital for genomics-assisted crop improvement of chickpea. The current study employed an integrated genomic strategy involving photosynthesis pathway gene-based association mapping, genome-wide association study, quantitative trait loci (QTL) mapping, and expression profiling. This identified 16 potential single nucleotide polymorphism loci linked to major QTLs underlying 16 candidate genes significantly associated with PE and SYP traits in chickpea.

View Article and Find Full Text PDF

Maize is a valuable source of food and feed worldwide. Maize endosperm protein is, however nutritionally poor due to the reduced levels of two essential amino acids, lysine and tryptophan. In this study, recessive opaque2 (o2) allele that confers enhanced endosperm lysine and tryptophan, was introgressed using marker-assisted backcross breeding into three normal inbred lines (HKI323, HKI1105 and HKI1128).

View Article and Find Full Text PDF

Maize grains are the important source of food and energy, but possess very low proA (< 2.5 µg/g) compared to target level of 15 µg/g set by HarvestPlus to alleviate VAD. Favorable allele having variation in 5' untranslated region (UTR) of () gene enhances concentration of proA in maize.

View Article and Find Full Text PDF

Radiation processing of soybean, varying in seed coat colour, was carried out at dose levels of 0.25, 0.5 and 1 kGy to evaluate their potential anti-proliferative and cytoprotective effects in an in vitro cell culture system.

View Article and Find Full Text PDF

A comprehensive study on characterization and genetic diversity analysis was carried out in 16 'Ogura'-based 'CMS' lines of cabbage using 14 agro-morphological traits and 29 SSR markers. Agro-morphological characterization depicted considerable variations for different horticultural traits studied. The genotype, ZHA-2, performed better for most of the economically important quantitative traits.

View Article and Find Full Text PDF

The present study is aimed at improving the aluminium tolerance in maize crop employing the potential of microbial inoculants in conferring resistance to these toxicities via production of certain chelating compounds like siderophores, exopolysachharides and organic acids. Acid soils have now-a-days become one of the key factors for limiting growth of many agriculturally important crops. Aluminium  is one of the major elements present in acid soils and is mainly responsible for toxicity in the soil.

View Article and Find Full Text PDF

Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility.

View Article and Find Full Text PDF

Soil quality degradation associated with resources scarcity is the major concern for the sustainability of conventional rice-wheat system in South Asia. Replacement of conventional management practices with conservation agriculture (CA) is required to improve soil quality. A field experiment was conducted to assess the effect of CA on soil physical (bulk density, penetration resistance, infiltration) and chemical (N, P, K, S, micronutrients) properties after 4 years in North-West India.

View Article and Find Full Text PDF

Contamination of environment and food from the prevalent spores and mycotoxins of Aspergillus niger has led to several diseases in humans and other animals. The present study investigated the control activity of plant essential oils against three strains of A. niger.

View Article and Find Full Text PDF

A Triticum timopheevii-derived bread wheat line, Selection G12, was screened with 40 pathotypes of leaf rust pathogen, Puccinia triticina at seedling stage and with two most commonly prevalent pathotypes 77-5 and 104-2 at adult plant stage. Selection G12 showed resistance at both seedling and adult plant stages. Genetic analysis in F, Fand F families at the seedling stage revealed that leaf rust resistance in Selection G12 is conditioned by a single incompletely dominant gene.

View Article and Find Full Text PDF

A combinatorial genomics-assisted breeding strategy encompassing association analysis, genetic mapping and expression profiling is found most promising for quantitative dissection of complex traits in crop plants. The present study employed GWAS (genome-wide association study) using 24,405 SNPs (single nucleotide polymorphisms) obtained with genotyping-by-sequencing (GBS) of 92 sequenced desi and kabuli accessions of chickpea. This identified eight significant genomic loci associated with erect (E)/semi-erect (SE) vs.

View Article and Find Full Text PDF

A comparative study reveals the higher resolution of RAPD over ARDRA for analyzing diversity of Nostoc strains.

3 Biotech

June 2017

Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.

Nostoc is a diverse genus of filamentous cyanobacteria with tremendous potential for agricultural and industrial applications. Morphometric methods and routine 16S rDNA-based identification undermines the genetic diversity and impedes strain-level differentiation. A comparative study to deduce the discriminatory power of random amplified polymorphic DNA (RAPD) and amplified ribosomal DNA restriction analysis (ARDRA) for analyzing the genetic diversity of 20 Nostoc strains of diverse geographical origin was carried out.

View Article and Find Full Text PDF