3 results match your criteria: "India. debajyoti.ghoshal@jadavpuruniversity.in.[Affiliation]"

The external stimuli-responsive excited-state intramolecular proton transfer (ESIPT) on/off mechanism is a unique and expedient sensing method that offers easy monitoring through the transition between dual and single-peak emissions. To avail this advantage of ESIPT-based sensing for selective metal ion detection and trace water detection, we have synthesized a 2,5-dihydroxyterephthalate (dht)-based interwoven polycatenated coordination polymer (1). The synthesized compound has been thoroughly characterized using single-crystal and powder X-ray diffraction techniques, along with other physicochemical methods.

View Article and Find Full Text PDF

A convenient, fast, selective, sustainable detection and capture of hydrochloric acid and ammonia vapours in the solid state with bare eye colour switching is observed by a robust microporous 2D zigzag Zn-MOF based material. Here ESIPT off/on based dual emission alteration has been employed for sensing.

View Article and Find Full Text PDF

We synthesized a two-fold interpenetrated 3D MOF with two crystallographically distinct C[double bond, length as m-dash]C bonds, which undergoes [2+2] photo-cycloaddition and thermal reversible reaction, in a single-crystal-to-single-crystal (SCSC) manner. The softer nature and comparable mechanical properties of the crystals of the parent and cyclized MOFs revealed by nanoindentation allowed rationalizing their structural softness and SCSC transformation behaviour.

View Article and Find Full Text PDF