6 results match your criteria: "India. Electronic address: psharma@nalandauniv.edu.in.[Affiliation]"

Adsorptive behavior of micro(nano)plastics through biochar: Co-existence, consequences, and challenges in contaminated ecosystems.

Sci Total Environ

January 2023

School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India; School of Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248007, India. Electronic address:

The abundance of micro(nano)plastics in natural ecosystems is a crucial global challenge, as these small-sized plastic particles originate from land-based and marine-based activities and are widely present in marine, freshwater, and terrestrial ecosystems. Micro(nano)plastics can significantly be reduced through various methods, such as biological, chemical, and physical techniques. Biochar is a low-cost adsorbent and is considered an efficient material and its application is ecologically effective carbon-negative for remediation of organic and inorganic pollutants.

View Article and Find Full Text PDF

Rising global temperature, pollution load, and energy crises are serious problems, recently facing the world. Scientists around the world are ambitious to find eco-friendly and cost-effective routes for resolving these problems. Biochar has emerged as an agent for environmental remediation and has proven to be the effective sorbent to inorganic and organic pollutants in water and soil.

View Article and Find Full Text PDF

Fluoride (F) is one of the essential elements found in soil and water released from geogenic sources and several anthropogenic activities. Fluoride causes fluorosis, dental and skeletal growth problems, teeth mottling, and neurological damage due to prolonged consumption, affecting millions worldwide. Adsorption is an extensively implemented technique in water and wastewater treatment for fluoride, with significant potential due to efficiency, cost-effectiveness, ease of operation, and reusability.

View Article and Find Full Text PDF

Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives.

J Environ Manage

September 2022

School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; School of Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248 007, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India. Electronic address:

Chromium originates from geogenic and extensive anthropogenic activities and significantly impacts natural ecosystems and human health. Various methods have been applied to remove hexavalent chromium (Cr(VI)) from aquatic environmental matrices, including adsorption via different adsorbents, which is considered to be the most common and low-cost approach. Biochar materials have been recognized as renewable carbon sorbents, pyrolyzed from various biomass at different temperatures under limited/no oxygen conditions for heavy metals remediation.

View Article and Find Full Text PDF

Microplastic pollution has severe ecological and environmental concerns because of its enormous production and discharge in natural ecosystems worldwide. Microplastics interact with heavy metals and metalloids like arsenic, chromium, copper, cadmium, and lead in soil and can cause detrimental effects on soil structure and microbial activities and subsequently impact the plants and human health. This article focuses on microplastic translocation from soil to plants together with heavy metals.

View Article and Find Full Text PDF

Micro(nano)plastics pollution and human health: How plastics can induce carcinogenesis to humans?

Chemosphere

July 2022

Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden.

Microplastics (MPs) and nanoplastics (NPs) are key indicators of the plasticine era, widely spread across different ecosystems. MPs and NPs become global stressors due to their inherent physicochemical characteristics and potential impact on ecosystems and humans. MPs and NPs have been exposed to humans via various pathways, such as tap water, bottled water, seafood, beverages, milk, fish, salts, fruits, and vegetables.

View Article and Find Full Text PDF