881,360 results match your criteria: "India; St.Gregorios Dental College Research Centre[Affiliation]"

A mechanically stable and thermo-irreversible supramolecular Ni(II)-selective gel () has been developed by utilizing the N,O-donor Schiff base (E)-1-((4-(diethylamino)phenylimino)-methyl)naphthalen-2-ol () gelator and EtN in binary THF:CHOH (1:1) solutions at room temperature (rt). Metallogel has been characterized by spectral and analytical techniques, i.e.

View Article and Find Full Text PDF

Co(II)-Based 2D Coordination Polymer Featuring Energy Storage and Detection of Aqueous Inorganic Anions.

ACS Omega

January 2025

Department of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.

Herein, we have synthesized a Co(II)-based 2D coordination polymer [Co(5-AIA)(Imidazole)] () (AIA = 5-aminoisophthalic acid) via a solvothermal approach. SCXRD (single-crystal X-ray diffraction) was utilized to analyze the crystal structure of fabricated . Moreover, PXRD, TGA, FTIR, and SEM analyses were done to identify the structural features of fabricated .

View Article and Find Full Text PDF

Waste plastic oils (WPOs) can help address the global energy crisis caused by the rapid depletion of fossil fuels, global warming, and strict emission regulations. The present research delves into the intricate interplay of higher alcohol blends in the context of combustion, performance, and emission characteristics within a common rail direct injection engine. In this regard, 1-hexanol has been selected as the blending constituent for the WPO to tackle emission challenges while concurrently reducing dependence on conventional fuel, as it stands out for its enhanced fuel properties compared to lower alcohols.

View Article and Find Full Text PDF

The current investigation focuses on the copyrolysis of L. (a nonedible oilseed, also known as Nahar) and polyethyelene terephthalate (PET) plastic waste to gain insights into the composition of pyrolysates and the thermal decomposition of complex and mixed feedstocks. The physicochemical properties of the feedstocks were studied through thermogravimetric analysis at a heating rate of 15 °C min, bomb calorimetry, and proximate/ultimate analysis.

View Article and Find Full Text PDF

Diabetes has become a global epidemic, affecting even the younger people on an alarming scale. Inhibiting intestinal α-glucosidase is one of the key approaches to managing type 2 diabetes (T2D). In the present study, phenolic compounds (PCs) produced by endophytic fungi as potential α-glucosidase inhibitors (AGIs) are explored through ADMET profiling, molecular docking, and molecular dynamics (MD) Simulations.

View Article and Find Full Text PDF

Discovery of 2-Pyrazolines That Inhibit the Phosphorylation of STAT3 as Nanomolar Cytotoxic Agents.

ACS Omega

January 2025

Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India.

STAT3 has emerged as a validated target in cancer, being functionally associated with breast cancer (BC) development, growth, resistance to chemotherapy, metastasis, and evasion of immune surveillance. Previously, a series of compounds consisting of imidazo[1,2-]pyridine tethered 2-pyrazolines (referred to as ITPs) were developed that inhibit STAT3 phosphorylation in estrogen receptor-positive (ER+) BC cells. Herein, a new library of derivatives consisting of imidazo[1,2-]pyridine clubbed 2-pyrazolines (-) and its amide derivatives (-) have been synthesized.

View Article and Find Full Text PDF

Nickel-based metal-organic frameworks, denoted as three-dimensional nickel trimesic acid frameworks (3D Ni-TMAF), are gaining significant attention for their application in nonenzymatic glucose sensing due to their unique properties. Ni-MOFs possess a high surface area, tunable pore structures, and excellent electrochemical activity, which makes them ideal for facilitating electron transfer and enhancing the catalytic oxidation of glucose. This research describes a new electrochemical enzyme-mimic glucose biosensor in biological solutions that utilizes 3D nanospheres Ni-TMAF created layer-by-layer on a highly porous nickel substrate.

View Article and Find Full Text PDF

Host-directed therapies (HDTs) resolve excessive inflammation during tuberculosis (TB) disease, which leads to irreversible lung tissue damage. The peptide-based nanostructures possess intrinsic anti-inflammatory and antioxidant properties among HDTs. Native carnosine, a natural dipeptide with superior self-organization and functionalities, was chosen for nanoformulation.

View Article and Find Full Text PDF

Liver cancer is a prevalent and significant cause of death in humans. The use of novel biodegradable materials for various biomedical applications is being recently recommended as complementary as well as alternative solution for traditional chemotherapy. This study focuses on the synthesis of biodegradable nanocarriers [chitosan-coated poly(lactic acid) NPs (Cht-PLA NPs)] for the delivery of an anticancer drug vinblastine (Vbx) and to evaluate its therapeutic potential in human hepatocellular carcinoma (HepG2) cells.

View Article and Find Full Text PDF

Effective engineering of nanostructured materials provides a scope to explore the underlying photoelectric phenomenon completely. A simple cost-effective chemical reduction route is taken to grow nanoparticles of Cd Zn S with varying = 1, 0.7, 0.

View Article and Find Full Text PDF

Several neurodegenerative diseases are associated with the deposition of amyloid fibrils. Although these diseases are irreversible, knowing the aggregation mechanism is useful in developing drugs that can arrest or decrease the aggregation rate. In this study, we are interested in investigating the effect of Coomassie brilliant blue (CBB G-250) on the aggregation of hen egg white lysozyme (HEWL) at pH 7.

View Article and Find Full Text PDF

The presence of chlorinated compounds in water resources presents various environmental and health risks. Therefore, there is a precise need to develop a potential technique for fast and efficient monitoring of chlorinated contaminants in water due to environmental protection and regulation compliance. Here, we designed a paper-based thin-film solid-phase microextraction (TF-SPME) patch to estimate 4-chlorophenol (4-CRP), a widely known environmentally hazardous pollutant in water samples.

View Article and Find Full Text PDF

This study investigates solute-solvent interactions in ternary systems consisting of lithium trifluoromethanesulfonate (LiOTf) as the solute and tetraethylene glycol dimethyl ether (TEGDME) and 1,2-dimethoxyethane (DME) as solvents over a range of temperatures (293.15-313.15 K).

View Article and Find Full Text PDF

The present work focuses on a newly synthesized pyrazolo[3,4-]pyridine prepared by formal [3 + 3] cycloaddition using copper(II) acetylacetonate as the catalyst; efficient and effective mild reactions with high yields were obtained using this method. The synthesized compounds were identified by FT-IR, H and C NMR, and mass spectra (/) analyses. The compounds () were screened for several in vitro and in silico activities.

View Article and Find Full Text PDF

Identifying Potential Autophagy Modulators in Panch Phoron Spices (P5S): An In Silico approach.

ACS Omega

January 2025

Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research (ICEIR-4), Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India.

Despite recent breakthroughs in diagnosis and treatment, cancer remains a worldwide health challenge with high mortality. Autophagy plays a major role in the progression and development. Starving cancer cells obtain nutrients through the upregulation of autophagy.

View Article and Find Full Text PDF

The ZrO-embedded carboxy-functionalized -BN composite, combined with graphene oxide (GO), formed a novel BN-COOH@ZrO/GO composite. Structural characterization through IR, Raman spectroscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy supported the successful preparation of the composite, while scanning electron microscopy and transmission electron microscopy revealed its surface morphology and the presence of component materials. UV-vis spectroscopy (solid state) further supported these findings.

View Article and Find Full Text PDF

In this work, we present the synthesis, solid-state characterization, and studies of two pyrazole derivatives: 5-(2-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (I) and 5-(4-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (II). The molecular crystal properties, in terms of intermolecular hydrogen bonds and other weak interactions, are analyzed using single crystal X-ray diffraction. The Hirshfeld surfaces computational method is used to quantify the intermolecular interactions, density functional theory for theoretical structural optimization, and its comparison with the experimental structure and studies using docking and molecular dynamics studies of I and II with CDC7-kinase.

View Article and Find Full Text PDF

A superhelix is a three-dimensional arrangement of a helix in which the helix is coiled around a common axis. Here, we are reporting a short 12-helix of α,γ-hybrid peptides terminated by metal binding ligands, self-assembled into a right-handed superhelix around a common axis in the presence of Cd(II) ions. Furthermore, these superhelices are assembled into hierarchical superhelical β-sheet-type structural motifs in single crystals.

View Article and Find Full Text PDF

This work reports the step-wise fabrication of a core-shell plasmonic nanocomposite Pd@BTL-Cd consisting of a BTL-Cd shell and a palladium nanoparticle core. BTL-Cd is the [Cd(BTL)·CdCl] complex where the heptadentate framework of the bis-compartmental ligand encapsulated two Cd(II) centres in separate pockets. Pd@BTL-Cd has been found to be highly efficient for the photocatalytic conversion of furfural (a biomass-derived aldehyde) to furfuryl amine reductive amination in aqueous ammonia at room temperature.

View Article and Find Full Text PDF

Adolescence is a critical life period that marks the transition into adulthood. This novel study aims to evaluate the benefits of 4- day intervention, Sudarshan Kriya Yoga (SKY), a breathing technique, on the emotional, mental, and cognitive health of teenagers. Open label trial tests were administered at pre-intervention, immediately after SKY, and after 40 days of SKY practice.

View Article and Find Full Text PDF

At present, plastic pollution is a global environmental catastrophe and a major threat to mankind. Moreover, the increasing manufacture of various plastic products is causing rapid depletion of precious resources. Thus, transforming plastic waste into feedstock, which can maintain a circular economy, has emerged as a significant technique for waste management and carbon resource conservation.

View Article and Find Full Text PDF

Non-surgical management of gingival cleft.

Minerva Dent Oral Sci

January 2025

Department of Oral Rehabilitation and Maxillofacial Prosthesis, Dental School, University of Turin, Turin, Italy.

The aims of the present case report are to describe the non-surgical management in addition to hyaluronic acid application of two gingival recessions with cleft and to perform a narrative review on the newest evidence of non-surgical treatment of gingival recessions. A 47-year-old female patient with dentine hypersensitivity and pain during brushing has type 1 gingival recession with red Stillman's cleft on 1.4 and 1.

View Article and Find Full Text PDF

Background: Oral cancer is a predominant and aggressive form of head and neck cancer with limited treatment options. Stevioside, a naturally occurring biocompatible compound, has gained attention for its potential therapeutic properties, although its molecular mechanistic role in OSCC merely understood. This study aims to elucidate the impact of stevioside on OSCC cells, focusing on its inhibitory effects on cell proliferation and epithelial-mesenchymal transitions (EMT).

View Article and Find Full Text PDF

Unmasking the potential: a historical perspective on the evolution of exfoliative cytology in oral cavity neoplasms.

Minerva Dent Oral Sci

January 2025

Department of Biomedical and Dental Sciences, Morphological and Functional Images, G. Martino University Hospital, University of Messina, Messina, Italy.

Exfoliative cytology has proven to be a valuable diagnostic tool in the early detection of malignant neoplasms. However, its application in the oral cavity has been met with skepticism and limited investigation due to the perception that clinical examination alone is sufficient for early diagnosis. Nonetheless, recent research efforts have focused on the utility of exfoliative cytology in oral cavity neoplasms, motivated by the high mortality rate associated with oral cancer.

View Article and Find Full Text PDF

Revolutionizing liver fibrosis research: the promise of 3D organoid models in understanding and treating chronic liver disease.

Expert Rev Gastroenterol Hepatol

January 2025

Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany.

Introduction: Liver fibrosis, marked by excessive extracellular matrix deposition, is a significant consequence of chronic liver injuries from various conditions. It can progress to end-stage liver disease, with liver transplantation often being the only treatment option. Recent advancements in 3D-organoid technology have transformed liver disease research by providing models that mimic the human liver's physiological environment, offering insights into mechanisms of fibrosis and potential therapies.

View Article and Find Full Text PDF