27,478 results match your criteria: "Illinois 61801; and RIKEN Brain Science Institute (Y.Y.)[Affiliation]"

Feed additives for methane mitigation: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants.

J Dairy Sci

January 2025

Instituto de Investigaciones Agropecuarias - Centro Regional de Investigación Carillanca, 4880000 Vilcún, La Araucanía, Chile. Electronic address:

This publication aims to provide guidelines of the knowledge required and the potential research to be conducted in order to understand the mode of action of antimethanogenic feed additives (AMFA). In the first part of the paper, we classify AMFA into 4 categories according to their mode of action: (1) lowering dihydrogen (H) production; (2) inhibiting methanogens; (3) promoting alternative H-incorporating pathways; and (4) oxidizing methane (CH). The second part of the paper presents questions that guide the research to identify the mode of action of an AMFA on the rumen CH production from 5 different perspectives: (1) microbiology; (2) cell and molecular biochemistry; (3) microbial ecology; (4) animal metabolism; and (5) cross-cutting aspects.

View Article and Find Full Text PDF

Modeling Diffusive Motion of Ferredoxin and Plastocyanin on the PSI Domain of MIT9313.

J Phys Chem B

December 2024

Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States.

Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of , the most abundant phototroph on Earth by mass.

View Article and Find Full Text PDF

Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by the presence of thioether cross-links called lanthionine and methyllanthionine, formed by dehydration of Ser/Thr residues and Michael-type addition of Cys side chains onto the resulting dehydroamino acids. Class II lanthipeptide synthetases are bifunctional enzymes responsible for both steps, thus generating macrocyclic natural products. ProcM is part of a group of class II lanthipeptide synthetases that are known for their remarkable substrate tolerance, having large numbers of natural substrates with highly diverse peptide sequences.

View Article and Find Full Text PDF

Corrigendum to "Textural improvement of pea protein-based high-moisture extrudates with corn zein and rice starch" [Int. J. Biol. Macromol. volume 281 (2024) 135960].

Int J Biol Macromol

December 2024

Department of Food Science and Technology, Ohio State University. 2015 Fyffe Road, Columbus, OH 43210, United States of America; Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States of America. Electronic address:

View Article and Find Full Text PDF

High-Performance Boiling Surfaces Enabled by an Electrode-Transpose All-Electrochemical Strategy.

Adv Sci (Weinh)

December 2024

Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.

High-performance boiling surfaces are in great demand for efficient cooling of high-heat-flux devices. Although various micro-/nano-structured surfaces have been engineered toward higher surface wettability and wickability for enhanced boiling, the design and fabrication of surface structures for realizing both high critical heat flux (CHF) and high heat transfer coefficient (HTC) remain a key challenge. Here, a novel "electrode-transpose" all-electrochemical strategy is proposed to create superhydrophilic microporous surfaces with higher dendrites and larger pores by simply adding an electrochemical etching step prior to the multiple electrochemical deposition steps.

View Article and Find Full Text PDF

A Versatile Drift-Free Super-Resolution Imaging Method via Oblique Bright-Field Correlation.

Adv Sci (Weinh)

December 2024

Department of Bioengineering, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.

High-resolution optical microscopy, particularly super-resolution localization microscopy, requires precise real-time drift correction to maintain constant focus at nanoscale precision during the prolonged data acquisition. Existing methods, such as fiducial marker tracking, reflection monitoring, and bright-field image correlation, each provide certain advantages but are limited in their broad applicability. In this work, a versatile and robust drift correction technique is presented for single-molecule localization-based super-resolution microscopy.

View Article and Find Full Text PDF

The calcium-dependent antibiotics (CDAs) are a group of seven closely related membrane-active cyclic lipopeptide antibiotics (cLPAs) first isolated in the early 1980s from the fermentation broth of . Their target was unknown, and the mechanism of action is uncertain. Herein, we report new routes for the synthesis of CDA4b and its analogues, explore the structure-activity relationships at its lipid tail and at positions 3, 9, and 11, and determine the CDAs' lipid target.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy: a half-century historical perspective.

Chem Soc Rev

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.

Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.

View Article and Find Full Text PDF

A Critical Perspective on Photothermal De-Icing.

Adv Mater

December 2024

Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.

To tackle the formidable challenges posed by extreme cold weather events, significant advancements have been made in developing functional surfaces capable of efficiently removing accreted ice. Nevertheless, many of these surfaces still require external energy input, such as electrical power, which raises concerns regarding their alignment with global sustainability goals. Over the past decade, increasing attention has been directed toward photothermal surface designs that harness solar energy-a resource available on Earth in quantities exceeding the total reserves of coal and oil combined.

View Article and Find Full Text PDF

Molecular target for sprayable double-stranded RNA-based biopesticide against Amphitetranychus viennensis (Acari, Tetranychidae).

Int J Biol Macromol

December 2024

College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China. Electronic address:

Amphitetranychus viennensis, a destructive pest mite of fruit plants in Europe and Asia, poses a serious challenge due to its adaptability and resistance to multiple acaricides. RNA interference (RNAi)-based technologies offer a promising alternative to address this emerging issue. In this study, we screened for candidate genes that can be targeted for spray-induced gene silencing (SIGS).

View Article and Find Full Text PDF

A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway.

Sci Adv

December 2024

Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.

The covalently attached cofactor biotin plays pivotal roles in central metabolism. The top-priority ESKAPE-type pathogens, and , constitute a public health challenge of global concern. Despite the fact that the late step of biotin synthesis is a validated anti-ESKAPE drug target, the primary stage remains fragmentarily understood.

View Article and Find Full Text PDF

Concise total syntheses of several 5/7/6 norcembranoids, including ineleganolide, scabrolide B, sinuscalide C, and fragilolide A have been achieved through a fragment coupling/ring closure approach. The central seven-membered ring was forged through sequential Mukaiyama-Michael/aldol reactions using norcarvone and a decorated bicyclic lactone incorporating a latent electrophile. Subsequent manipulations installed the reactive enedione motif and delivered scabrolide B in 11 steps from a chiral pool-derived enone.

View Article and Find Full Text PDF

Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics.

NAR Genom Bioinform

December 2024

Department of Chemical and Biological Engineering,  University at Buffalo-SUNY, 308 Furnas Hall, Buffalo, NY 14260, USA.

While single-cell studies have made significant impacts in various subfields of biology, they lag in the Glycosciences. To address this gap, we analyzed single-cell glycogene expressions in the Tabula Sapiens dataset of human tissues and cell types using a recent glycosylation-specific gene ontology (GlycoEnzOnto). At the median sequencing (count) depth, ∼40-50 out of 400 glycogenes were detected in individual cells.

View Article and Find Full Text PDF

Integration of metabolomics and other omics: from microbes to microbiome.

Appl Microbiol Biotechnol

December 2024

Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea.

Metabolomics is a cutting-edge omics technology that identifies metabolites in organisms and their environments and tracks their fluctuations. This field has been extensively utilized to elucidate previously unknown metabolic pathways and to identify the underlying causes of metabolic changes, given its direct association with phenotypic alterations. However, metabolomics inherently has limitations that can lead to false positives and false negatives.

View Article and Find Full Text PDF

is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities with FHB.

View Article and Find Full Text PDF

Alchemical free energy calculations are widely used to predict the binding affinity of small molecule ligands to protein targets; however, the application of these methods to RNA targets has not been deeply explored. We systematically investigated how modeling decisions affect the performance of absolute binding free energy calculations for a relatively simple RNA model system: theophylline-binding RNA aptamer with theophylline and five analogs. The goal of this investigation was 2-fold: (1) understanding the performance levels we can expect from absolute free energy calculations for a simple RNA complex and (2) learning about practical modeling considerations that impact the success of RNA-binding predictions, which may be different from the best practices established for protein targets.

View Article and Find Full Text PDF

Organoids are multicellular structures formed from populations of individual cells allowing modeling of structural and functional aspects of organs and tissues in normal and diseased states. They offer unique opportunities to model and treat disease. Using a mouse embryonic stem cell line, we have cultured organoids that express markers of spinal cord motor neurons as well as motor neurons found within the peripheral nervous system.

View Article and Find Full Text PDF

Attachment and removal of porcine rotavirus (PRV) and Tulane virus (TV) on fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach as affected by ultrasonication in combination with oxidant- or surfactant-based sanitizer(s).

Int J Food Microbiol

December 2024

Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27401, USA. Electronic address:

This work examined the attachment of porcine rotavirus (PRV) and Tulane virus (TV), a surrogate for human norovirus, to fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach. The effect of produce type, sanitizer, and ultrasound treatment on removal of PRV and TV from produce and artificial surfaces was also investigated. Sanitization was performed with two oxidant-based sanitizers (chlorine and peroxyacetic acid) and one surfactant-based sanitizer (0.

View Article and Find Full Text PDF

We present here a dual-channel nanoelectrode to detect both redox-active and non-redox-active analytes. The dual-channel nanoelectrode was developed from theta nanopipette. We developed one channel of the theta nanopipette to be a carbon nanoelectrode and the other channel to be a nano interface between two immiscible electrolyte solutions (nanoITIES) electrode, producing a nano-carbon-ITIES platform.

View Article and Find Full Text PDF

Global demand for food may rise by 60% mid-century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen.

View Article and Find Full Text PDF

Various pet food diet formats are available, but many are poorly studied. The objective of this study was to determine the apparent total tract macronutrient digestibility (ATTD) of frozen raw, freeze-dried raw, fresh, and extruded dog foods and assess their effects on serum metabolites, hematology, and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Ten beagle dogs (4.

View Article and Find Full Text PDF

Improving Recovery of Diatoms Bio-Silica Using Chemical Treatment with VAUS.

Materials (Basel)

November 2024

Department of Dentistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea.

High-temperature baking is a typical method to remove organic matter from diatoms, but it is not suitable for bio-silica because of the high crystallinity. This study provides a method using the VAUS to remove organic matter from diatoms more quickly and biocompatibly. The optimal frequency for organic matter removal was investigated for domestically produced .

View Article and Find Full Text PDF

Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches.

Int J Mol Sci

December 2024

Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA.

The bioavailability of small-molecule drugs remains a critical challenge in pharmaceutical development, significantly impacting therapeutic efficacy and commercial viability. This review synthesizes recent advances in understanding and overcoming bioavailability limitations, focusing on key physicochemical and biological factors influencing drug absorption and distribution. We examine cutting-edge strategies for enhancing bioavailability, including innovative formulation approaches, rational structural modifications, and the application of artificial intelligence in drug design.

View Article and Find Full Text PDF

Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including , are unable to utilize xylose effectively. To address this limitation, we engineered a strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the , , and genes, resulting in a strain with a strong promoter for and weaker promoters for and .

View Article and Find Full Text PDF

A Quantitative Risk Assessment Model for in Ready-to-Eat Smoked and Gravad Fish.

Foods

November 2024

Nutrition and Food Safety Department, World Health Organization, 1202 Geneva, Switzerland.

This study introduces a quantitative risk assessment (QRA) model aimed at evaluating the risk of invasive listeriosis linked to the consumption of ready-to-eat (RTE) smoked and gravad fish. The QRA model, based on published data, simulates the production process from fish harvest through to consumer intake, specifically focusing on smoked brine-injected, smoked dry-salted, and gravad fish. In a reference scenario, model predictions reveal substantial probabilities of lot and pack contamination at the end of processing (38.

View Article and Find Full Text PDF