265 results match your criteria: "INSERM U1212 - CNRS 5320 & Université de Bordeaux[Affiliation]"

Kinetoplastids are a clade of eukaryotic protozoans that include human parasitic pathogens like trypanosomes and Leishmania species. In these organisms, protein-coding genes are transcribed as polycistronic pre-mRNAs, which need to be processed by the coupled action of trans-splicing and polyadenylation to yield monogenic mature mRNAs. During trans-splicing, a universal RNA sequence, the spliced leader RNA (SL RNA) mini-exon, is added to the 5'-end of each mRNA.

View Article and Find Full Text PDF

Amphiphilic dynamic covalent polymer vectors of siRNA.

Chem Sci

December 2024

Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France

Dynamic covalent polymers (DCPs) recently emerged as smart siRNA delivery vectors, which dynamically self-assemble through siRNA templating and depolymerize in a controlled manner. Herein, we report the dynamic combinatorial screening of cationic and amphiphilic peptide-based monomers. We provide experimental evidence, by mass spectrometry analyses, of the siRNA-templated formation of DCPs, and show that amphiphilic DCPs display superior activity in terms of siRNA complexation and delivery in cells.

View Article and Find Full Text PDF

Several approaches have been utilised to deliver therapeutic nanoparticles inside the brain but rendered by certain limitation such as active efflux, non-stability, toxicity of the nanocarrier, transport, physicochemical properties and many more. In this context use of biocompatible nano carriers is currently investigated. We herein present the hypothesis that the nucleoside-lipid based conjugates (nucleolipids) which are biocompatible in nature and have molecular recognition can be tuned for improved permeation across blood-brain barrier (BBB).

View Article and Find Full Text PDF

Herein, we report the design, synthesis, and characterisation of a new library of enantiopure aminoalcohol fluorenes, as well as their in vitro evaluation for biological properties, including activity against two strains of P. falciparum (3D7 and W2) and cytotoxicity on the HepG2 cell line. All tested compounds exhibited good to excellent antimalarial potency with IC values ranging from 0.

View Article and Find Full Text PDF

In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures.

View Article and Find Full Text PDF

Disordered regions of human eIF4B orchestrate a dynamic self-association landscape.

Nat Commun

October 2024

University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France.

Article Synopsis
  • Eukaryotic translation initiation factor eIF4B is crucial for effective cap-dependent translation, is commonly overexpressed in cancer cells, and may play a role in stress granule formation.
  • Due to its high intrinsic disorder, eIF4B is often not seen in cryo-EM studies of translation complexes, with most observations limited to its structured RNA recognition motif domain.
  • Research incorporating experiments and simulations reveals that eIF4B's intrinsically disordered region (IDR) helps transition from monomers to larger dynamic oligomers, influenced by factors like ionic strength and molecular crowding, hinting at potential regulatory mechanisms affecting its behavior in cells.
View Article and Find Full Text PDF

Ligand-Induced Folding in a Dopamine-Binding DNA Aptamer.

Chembiochem

December 2024

Department of Chemistry, York University, 4700 Keele St., Toronto, Ontario, M3 J 1P3, Canada.

Aptamers are often employed as molecular recognition elements in the development of different types of biosensors. Many of these biosensors take advantage of the aptamer having a ligand-induced structure-formation binding mechanism. However, this binding mechanism is poorly understood.

View Article and Find Full Text PDF

Three-dimensional (3D) cancer models, such as multicellular tumor spheroids (MCTS), are biological supports used for research in oncology, drug development and nanotoxicity assays. However, due to various analytical and biological challenges, the main recurring problem faced when developing this type of 3D model is the lack of reproducibility. When using a 3D support to assess the effect of biologics, small molecules or nanoparticles, it is essential that the support remains constant over time and multiples productions.

View Article and Find Full Text PDF

The catalytic domain of the calcium-dependent endoribonuclease EndoU from Homo sapiens was expressed in E. coli with C and N labeling. A nearly complete assignment of backbone H, N, and C resonances was obtained, as well as a secondary structure prediction based on the assigned chemical shifts.

View Article and Find Full Text PDF

Ribonucleases (RNases) are ubiquitous enzymes that process or degrade RNA, essential for cellular functions and immune responses. The EndoU-like superfamily includes endoribonucleases conserved across bacteria, eukaryotes, and certain viruses, with an ancient evolutionary link to the ribonuclease A-like superfamily. Both bacterial EndoU and animal RNase A share a similar fold and function independently of cofactors.

View Article and Find Full Text PDF

Disentangling the pseudoknots of toxin translation.

Proc Natl Acad Sci U S A

July 2024

Microbial Gene Expression department, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris 75005, France.

View Article and Find Full Text PDF

Signalosomes are high-order protein machineries involved in complex mechanisms controlling regulated immune defense and cell death execution. The immune response is initiated by the recognition of exogeneous or endogenous signals, triggering the signalosome assembly process. The final step of signalosome fate often involves membrane-targeting and activation of pore-forming execution domains, leading to membrane disruption and ultimately cell death.

View Article and Find Full Text PDF

Soybean is a pulse which has considerable nutritional value due to its high protein, fibers and polyunsaturated fatty acid (PUFA) contents. It also contains phytoestrogenic compounds that definitely hinder its recommendation for general consumption. Contrary to ancient times, when soybeans were boiled, modern commercial soy foods can contain up to 150 mg/100g of estrogenic isoflavones.

View Article and Find Full Text PDF

miRNA and DNA analysis by negative ion electron transfer dissociation and infrared multiple-photon dissociation mass spectrometry.

Anal Chim Acta

April 2024

Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600, Pessac, France; Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600, Pessac, France.

Background: The use of simple and hybrid fragmentation techniques for the identification of molecules in tandem mass spectrometry provides different and complementary information on the structure of molecules. Nevertheless, these techniques have not been as widely explored for oligonucleotides as for peptides or proteins. The analysis of microRNAs (miRNAs) warrants special attention, given their regulatory role and their relationship with several diseases.

View Article and Find Full Text PDF

Advanced Platelet Lysate Aerogels: Biomaterials for Regenerative Applications.

J Funct Biomater

February 2024

CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France.

Human platelet lysate (HPL), rich in growth factors, is increasingly recognized for its potential in tissue engineering and regenerative medicine. However, its use in liquid or gel form is constrained by limited stability and handling difficulties. This study aimed to develop dry and porous aerogels from HPL hydrogel using an environmentally friendly supercritical CO-based shaping process, specifically tailored for tissue engineering applications.

View Article and Find Full Text PDF

Fluorinated GlycoNucleoLipid-based hydrogels as new spatiotemporal stimulable DDS.

Drug Deliv Transl Res

August 2024

University of Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, F-33076, Bordeaux, France.

Achieving a controlled release of several active pharmaceutical ingredients (APIs) remains a challenge for improving their therapeutic effects and reduced their side effects. In the current work, stimulable Drug Delivery Systems (DDS) based on supramolecular hydrogels were designed by combining two APIs featuring anticancer activities, namely the doxorubicin and phenazine 14. In vitro studies revealed promising physicochemical properties for all the investigated API loaded gels.

View Article and Find Full Text PDF

The syntheses of novel 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinazolines and 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinolines are reported here in six steps starting from various halogeno-quinazoline-2,4-(1,3)-diones or substituted anilines. The antiproliferative activities of the products were determined in vitro against a panel of breast (MCF-7 and MDA-MB-231), human adherent cervical (HeLa and SiHa), and ovarian (A2780) cell lines. Disubstituted 6- and 7-phenyl-bis(3-dimethylaminopropyl)aminomethylphenyl-quinazolines , , and displayed the most interesting antiproliferative activities against six human cancer cell lines.

View Article and Find Full Text PDF

Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are secondary structures formed by guanine-rich oligonucleotides involved in various biological processes. However, characterizing G4s is challenging, because of their structural polymorphism. Here, we establish how hydrogen-deuterium exchange native mass spectrometry (HDX/MS) can help to characterize the G4 structures and dynamics in solution.

View Article and Find Full Text PDF

Poly(N-methyl-N-vinylacetamide): A Strong Alternative to PEG for Lipid-Based Nanocarriers Delivering siRNA.

Adv Healthc Mater

March 2024

Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Avenue Hippocrate 15, Liège, 4000, Belgium.

Lipid-based nanocarriers have demonstrated high interest in delivering genetic material, exemplified by the success of Onpattro and COVID-19 vaccines. While PEGylation imparts stealth properties, it hampers cellular uptake and endosomal escape, and may trigger adverse reactions like accelerated blood clearance (ABC) and hypersensitivity reactions (HSR). This work highlights the great potential of amphiphilic poly(N-methyl-N-vinylacetamide) (PNMVA) derivatives as alternatives to lipid-PEG for siRNA delivery.

View Article and Find Full Text PDF

Molecular details of the CPSF73-CPSF100 C-terminal heterodimer and interaction with Symplekin.

Open Biol

November 2023

Inserm, CNRS, ARNA Laboratory, Univ. Bordeaux, Institut Européen de Chimie et Biologie, U1212, UMR 5320, 33600 Pessac, France.

Eukaryotic pre-mRNA is processed by a large multiprotein complex to accurately cleave the 3' end, and to catalyse the addition of the poly(A) tail. Within this cleavage and polyadenylation specificity factor (CPSF) machinery, the CPSF73/CPSF3 endonuclease subunit directly contacts both CPSF100/CPSF2 and the scaffold protein Symplekin to form a subcomplex known as the core cleavage complex or mammalian cleavage factor. Here we have taken advantage of a stable CPSF73-CPSF100 minimal heterodimer from to determine the solution structure formed by the first and second C-terminal domain (CTD1 and CTD2) of both proteins.

View Article and Find Full Text PDF

Structure of a DNA G-quadruplex that Modulates SP1 Binding Sites Architecture in HIV-1 Promoter.

J Mol Biol

January 2024

Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France. Electronic address:

Nucleic acid sequences containing guanine tracts are able to form non-canonical DNA or RNA structures known as G-quadruplexes (or G4s). These structures, based on the stacking of G-tetrads, are involved in various biological processes such as gene expression regulation. Here, we investigated a G4 forming sequence, HIVpro2, derived from the HIV-1 promoter.

View Article and Find Full Text PDF

Dynamics of G-Quadruplex Formation under Molecular Crowding.

J Phys Chem Lett

November 2023

Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.

G-quadruplex (G4) structures assemble from guanine-rich DNA sequences and are believed to regulate several key cellular processes. G4 formation and conformational interconversions are well-established to occur dynamically . However, a clear understanding of G4 formation dynamics in cells as well as under conditions mimicking the cellular environment is missing.

View Article and Find Full Text PDF

Diazirine is one of the smallest photo-sensitive moieties discovered to date. When incorporated in the structure of phospholipids, its minimal size has a low impact on the morphology of the resultant liposomes. A DMPC-diazirine analogue was designed and subsequently used to generate liposomes with a lower permeability and a lower phase-transition temperature compared to control DMPC liposomes.

View Article and Find Full Text PDF

Methodologies for bacterial ribonuclease characterization using RNA-seq.

FEMS Microbiol Rev

September 2023

Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany.

Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition.

View Article and Find Full Text PDF