26 results match your criteria: "IMP - Research Institute of Molecular Pathology[Affiliation]"

FAM3C/ILEI is an important factor in epithelial-to-mesenchymal transition (EMT) induction, tumor progression and metastasis. Overexpressed in many cancers, elevated ILEI levels and secretion correlate with poor patient survival. Although ILEI's causative role in invasive tumor growth and metastasis has been demonstrated in several cellular tumor models, there are no available transgenic mice to study these effects in the context of a complex organism.

View Article and Find Full Text PDF

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health.

View Article and Find Full Text PDF

Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM.

Structure

January 2023

IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Institute for Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany. Electronic address:

Molecular machines, such as polymerases, ribosomes, or proteasomes, fulfill complex tasks requiring the thermal energy of their environment. They achieve this by restricting random motion along a path of possible conformational changes. These changes are often directed through engagement with different cofactors, which can best be compared to a Brownian ratchet.

View Article and Find Full Text PDF

In axolotls (Ambystoma mexicanum), fertilization takes place internally. After courtship, the male axolotl deposits spermatophores, which the female takes up into her cloaca in order to fertilize eggs internally. The success of axolotl breedings is subject to several poorly understood factors including age, pairing, and genotype.

View Article and Find Full Text PDF

The gigantic 32Gb Axolotl genome inspires fascinating questions such as: how such a big genome is organized and packed in nuclei and how regulation of gene transcription can happen over such large genomic distances. Currently, there are many technical challenges when we investigate chromatin architecture in axolotl. For example, probing promoter-enhancer interactions in such a large genome.

View Article and Find Full Text PDF
Article Synopsis
  • The study assesses the effectiveness of an antigen-based nasal screening program for detecting SARS-CoV-2 in Austrian schools, covering over 5,370 schools.
  • By integrating nationwide screening data from March 2021 with a cohort study from 244 representative schools, the results highlight that only a portion of actual infections are identified, indicating low to moderate sensitivity.
  • Conversely, the program shows a very high specificity, as most non-infected individuals tested negative for the virus.
View Article and Find Full Text PDF

Prevalence of RT-qPCR-detected SARS-CoV-2 infection at schools: First results from the Austrian School-SARS-CoV-2 prospective cohort study.

Lancet Reg Health Eur

June 2021

Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.

Article Synopsis
  • A study in Austria aimed to determine the prevalence of SARS-CoV-2 infections among school pupils and teachers during the 2020/2021 school year using RT-qPCR testing.
  • The data analyzed showed an increase in infection rates from 0.39% to 1.39% over two rounds of testing, with notable correlations between higher infection rates and factors like population density and social deprivation.
  • Overall, the study found that family and community characteristics, rather than individual school factors like class size or age groups, influenced the prevalence of COVID-19 in schools.
View Article and Find Full Text PDF

Kinetochores are multi-subunit protein assemblies that link chromosomes to microtubules of the mitotic and meiotic spindle. It is still poorly understood how efficient, centromere-dependent kinetochore assembly is accomplished from hundreds of individual protein building blocks in a cell cycle-dependent manner. Here, by combining comprehensive phosphorylation analysis of native Ctf19 subunits with biochemical and functional assays in the model system budding yeast, we demonstrate that Cdk1 phosphorylation activates phospho-degrons on the essential subunit Ame1, which are recognized by the E3 ubiquitin ligase complex SCF-Cdc4.

View Article and Find Full Text PDF

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted.

View Article and Find Full Text PDF

We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses of acute unilateral vestibulopathy (AVS, n = 49), distal sensory polyneuropathy (PNP, n = 12), anterior lobe cerebellar atrophy (CA, n = 48), downbeat nystagmus syndrome (DN, n = 16), primary orthostatic tremor (OT, n = 25), Parkinson's disease (PD, n = 27), phobic postural vertigo (PPV n = 59) and healthy controls (HC, n = 57). We classify disorders and rank sway features using supervised machine learning.

View Article and Find Full Text PDF

The first challenge in the 2014 competition launched by the Teach-Discover-Treat (TDT) initiative asked for the development of a tutorial for ligand-based virtual screening, based on data from a primary phenotypic high-throughput screen (HTS) against malaria. The resulting Workflows were applied to select compounds from a commercial database, and a subset of those were purchased and tested experimentally for anti-malaria activity. Here, we present the two most successful Workflows, both using machine-learning approaches, and report the results for the 114 compounds tested in the follow-up screen.

View Article and Find Full Text PDF

Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring.

View Article and Find Full Text PDF

Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles.

Cell

May 2017

Department of Molecular Biology, Sciences III, University of Geneva, iGE3, 1211 Geneva, Switzerland. Electronic address:

The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles.

View Article and Find Full Text PDF

It is now well recognized that mutations, deregulated expression, and aberrant recruitment of epigenetic readers, writers, and erasers are fundamentally important processes in the onset and maintenance of many human tumors. The molecular, biological, and biochemical characteristics of a particular class of epigenetic erasers, the histone deacetylases (HDACs), have been extensively studied and small-molecule HDAC inhibitors (HDACis) have now been clinically approved for the treatment of human hemopoietic malignancies. This review explores our current understanding of the biological and molecular effects on tumor cells following HDACi treatment.

View Article and Find Full Text PDF

Cohesion between sister chromatids is established during DNA replication but needs to be maintained to enable proper chromosome-spindle attachments in mitosis or meiosis. Cohesion is mediated by cohesin, but also depends on cohesin acetylation and sororin. Sororin contributes to cohesion by stabilizing cohesin on DNA.

View Article and Find Full Text PDF

The development of the mammalian brain requires the generation, migration, and differentiation of neurons, cellular processes that are dependent on a dynamic microtubule cytoskeleton. Mutations in tubulin genes, which encode for the structural subunits of microtubules, cause detrimental neurological disorders known as the tubulinopathies. The disease spectra associated with different tubulin genes are overlapping but distinct, an observation believed to reflect functional specification of this multigene family.

View Article and Find Full Text PDF

5-Lipoxygenase is a direct p53 target gene in humans.

Biochim Biophys Acta

August 2015

Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany. Electronic address:

The p53 tumor suppressor plays a critical role in cancer, and more than 50% of human tumors contain mutations or deletions of the TP53 gene. p53 can transactivate or repress target genes in response to diverse stress signals, such as transient growth arrest, DNA repair, cellular differentiation, senescence and apoptosis. Through an unbiased genome-wide ChIP-seq analysis, we have found that 5-lipoxygenase (ALOX5, 5-LO) which is a key enzyme of leukotriene (LT) biosynthesis, is a direct target gene of p53 and its expression is induced by genotoxic stress via actinomycin D (Act.

View Article and Find Full Text PDF

Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here, we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells.

View Article and Find Full Text PDF

Background: Protein kinase A (cAMP-dependent kinase, PKA) is a serine/threonine kinase, for which ca. 150 substrate proteins are known. Based on a refinement of the recognition motif using the available experimental data, we wished to apply the simplified substrate protein binding model for accurate prediction of PKA phosphorylation sites, an approach that was previously successful for the prediction of lipid posttranslational modifications and of the PTS1 peroxisomal translocation signal.

View Article and Find Full Text PDF

Background: Manually finding subtle yet statistically significant links to distantly related homologues becomes practically impossible for very populated protein families due to the sheer number of similarity searches to be invoked and analyzed. The unclear evolutionary relationship between classical mammalian lipases and the recently discovered human adipose triglyceride lipase (ATGL; a patatin family member) is an exemplary case for such a problem.

Results: We describe an unsupervised, sensitive sequence segment collection heuristic suitable for assembling very large protein families.

View Article and Find Full Text PDF

We refined the motifs for carboxy-terminal protein prenylation by analysis of known substrates for farnesyltransferase (FT), geranylgeranyltransferase I (GGT1) and geranylgeranyltransferase II (GGT2). In addition to the CaaX box for the first two enzymes, we identify a preceding linker region that appears constrained in physicochemical properties, requiring small or flexible, preferably hydrophilic, amino acids. Predictors were constructed on the basis of sequence and physical property profiles, including interpositional correlations, and are available as the Prenylation Prediction Suite (PrePS, http://mendel.

View Article and Find Full Text PDF

How might cohesin hold sister chromatids together?

Philos Trans R Soc Lond B Biol Sci

March 2005

IMP (Research Institute of Molecular Pathology), Dr Bohr-Gasse 7, A-1030 Vienna, Austria.

The sister chromatid cohesion essential for the bi-orientation of chromosomes on mitotic spindles depends on a multi-subunit complex called cohesin. This paper reviews the evidence that cohesin is directly responsible for holding sister DNAs together and considers how it might perform this function in the light of recent data on its structure.

View Article and Find Full Text PDF

We evaluated the evolutionary conservation of glycine myristoylation within eukaryotic sequences. Our large-scale cross-genome analyses, available as MYRbase, show that the functional spectrum of myristoylated proteins is currently largely underestimated. We give experimental evidence for in vitro myristoylation of selected predictions.

View Article and Find Full Text PDF