34 results match your criteria: "IM Sechenov Moscow State Medical University[Affiliation]"

Article Synopsis
  • * A study in Russia examined 574 hospitalized children under 18 with COVID-19 from January 2022 to March 2023, finding about one-third had coinfections, predominantly adenovirus and bacterial infections.
  • * Results indicated that while viral coinfections led to higher fevers and bronchitis, bacterial coinfections resulted in longer illnesses and increased pneumonia, suggesting that seasonal viruses may have been more harmful to children during the Omicron wave than SARS-CoV-2 alone.
View Article and Find Full Text PDF

Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.

View Article and Find Full Text PDF

Multiple organ failure (MOF) is the major cause of morbidity and mortality in intensive care patients, but the mechanisms causing this severe syndrome are still poorly understood. Inflammatory response, tissue hypoxia, immune and cellular metabolic dysregulations, and endothelial and microvascular dysfunction are the main features of MOF, but the exact mechanisms leading to MOF are still unclear. Recent progress in the membrane research suggests that cellular plasma membranes play an important role in key functions of diverse organs.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effects of a two-week hyperthermia exposure program on the levels of irisin and BDNF in healthy young men.
  • Participants who underwent hyperthermia showed significant increases in both irisin and BDNF compared to those in the sham group.
  • The results suggest that hyperthermia may enhance fat metabolism and neuroplasticity in healthy individuals through the increased release of these biomarkers.
View Article and Find Full Text PDF

C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria.

J Cell Biol

February 2022

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina.

Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress.

View Article and Find Full Text PDF

Prokineticin-2 (Prok2) is an important secreted protein likely involved in the pathogenesis of several acute and chronic neurological diseases through currently unidentified regulatory mechanisms. The initial mechanical injury of neurons by traumatic brain injury triggers multiple secondary responses including various cell death programs. One of these is ferroptosis, which is associated with dysregulation of iron and thiols and culminates in fatal lipid peroxidation.

View Article and Find Full Text PDF

A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis.

Redox Biol

September 2021

Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Institute for Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia; Departments of Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, PA, USA. Electronic address:

Ferroptosis is a redox-driven type of regulated cell death program arising from maladaptation of three metabolic pathways: glutathione homeostasis, iron handling and lipid peroxidation. Though GSH/Gpx4 is the predominant system detoxifying phospholipid hydroperoxides (PLOOH) in mammalian cells, recently Gpx4-independent regulators of ferroptosis like ferroptosis suppressor protein 1 (FSP1) in resistant cancer lines and iNOS/NO in M1 macrophages have been discovered. We previously reported that Pseudomonas aeruginosa (PA) utilizes its 15- lipoxygenase (pLoxA) to trigger ferroptotic death in epithelial cells by oxidizing the host arachidonoyl-phosphatidylethanolamine (ETE-PE) into pro-ferroptotic 15-hydroperoxy- arachidonyl-PE (15-HpETE-PE).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that M1 macrophages can prevent ferroptosis through a mechanism involving high levels of nitric oxide (NO), which inhibits the production of a lipid that contributes to ferroptosis.
  • The study utilized various biochemical techniques to investigate how NO interferes with the enzyme 15-lipoxygenase (15LOX) complexed with a protein called PEBP1, revealing that NO competes with oxygen for the enzyme's active site.
  • The findings identified key residues in the enzyme that help facilitate this competition and confirmed that NO can effectively reach and react with the enzyme in macrophages, providing new insight into how NO suppresses ferroptotic processes.
View Article and Find Full Text PDF

Ferroptosis is associated with lipid hydroperoxides generated by the oxidation of polyunsaturated acyl chains. Lipid hydroperoxides are reduced by glutathione peroxidase 4 (GPX4) and GPX4 inhibitors induce ferroptosis. However, the therapeutic potential of triggering ferroptosis in cancer cells with polyunsaturated fatty acids is unknown.

View Article and Find Full Text PDF

Phospholipase iPLAβ averts ferroptosis by eliminating a redox lipid death signal.

Nat Chem Biol

April 2021

Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA.

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca-independent phospholipase Aβ (iPLAβ, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLAβ averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis.

View Article and Find Full Text PDF

Tumor recurrence years after seemingly successful treatment of primary tumors is one of the major causes of mortality in patients with cancer. Reactivation of dormant tumor cells is largely responsible for this phenomenon. Using dormancy models of lung and ovarian cancer, we found a specific mechanism, mediated by stress and neutrophils, that may govern this process.

View Article and Find Full Text PDF

Circulating microRNAs (miRNA) alterations have been reported in severe trauma patients but the pathophysiological relevance of these changes is still unclear. miRNAs are critical biologic regulators of pathological events such as hypoxia and inflammation, which are known to induce endoplasmic reticulum (ER) stress. ER stress is emerging as an important process contributing to the development of single and/or multiple organ dysfunction after trauma hemorrhagic shock (THS) accompanied by impaired tissue microcirculation and inflammation.

View Article and Find Full Text PDF

Background: Cerebral ischemia and neuroinflammation following aneurysmal subarachnoid hemorrhage (SAH) are major contributors to poor neurological outcome. Our study set out to investigate in an exploratory approach the interaction between NO and energy metabolism following SAH as both hypoxia and inflammation are known to affect nitric oxide (NO) metabolism and NO in turn affects mitochondria.

Methods: In seven patients under continuous multimodality neuromonitoring suffering poor-grade aneurysmal SAH, cerebral metabolism and NO levels (determined as a sum of nitrite plus nitrate) were determined in cerebral microdialysate for 14 days following SAH.

View Article and Find Full Text PDF

Biomaterials composed of extracellular matrix (ECM) provide both mechanical support and a reservoir of constructive signaling molecules that promote functional tissue repair. Recently, matrix-bound nanovesicles (MBVs) have been reported as an integral component of ECM bioscaffolds. Although liquid-phase extracellular vesicles (EVs) have been the subject of intense investigation, their similarity to MBV is limited to size and shape.

View Article and Find Full Text PDF

Enhanced morphological transformation of human lung epithelial cells by continuous exposure to cellulose nanocrystals.

Chemosphere

July 2020

EAB, HELD, NIOSH, CDC, Morgantown, WV, USA; Department of Physiology & Pharmacology, WVU, Morgantown, WV, USA. Electronic address:

Cellulose nanocrystals (CNC), also known as nanowhiskers, have recently gained much attention due to their biodegradable nature, advantageous chemical and mechanical properties, economic value and renewability thus making them attractive for a wide range of applications. However, before these materials can be considered for potential uses, investigation of their toxicity is prudent. Although CNC exposures are associated with pulmonary inflammation and damage as well as oxidative stress responses and genotoxicity in vivo, studies evaluating cell transformation or tumorigenic potential of CNC's were not previously conducted.

View Article and Find Full Text PDF

Ferroptotic death is the penalty for losing control over three processes-iron metabolism, lipid peroxidation and thiol regulation-that are common in the pro-inflammatory environment where professional phagocytes fulfill their functions and yet survive. We hypothesized that redox reprogramming of 15-lipoxygenase (15-LOX) during the generation of pro-ferroptotic signal 15-hydroperoxy-eicosa-tetra-enoyl-phosphatidylethanolamine (15-HpETE-PE) modulates ferroptotic endurance. Here, we have discovered that inducible nitric oxide synthase (iNOS)/NO-enrichment of activated M1 (but not alternatively activated M2) macrophages/microglia modulates susceptibility to ferroptosis.

View Article and Find Full Text PDF

Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death.

Free Radic Biol Med

February 2020

Center for Free Radical and Antioxidant Heath, USA; Department of Critical Care Medicine, University of Pittsburgh, USA. Electronic address:

High fidelity and effective adaptive changes of the cell and tissue metabolism to changing environments require strict coordination of numerous biological processes. Multicellular organisms developed sophisticated signaling systems of monitoring and responding to these different contexts. Among these systems, oxygenated lipids play a significant role realized via a variety of re-programming mechanisms.

View Article and Find Full Text PDF

The heme oxygenase (HO) system is essential for heme and iron homeostasis and necessary for adaptation to cell stress. HO degrades heme to biliverdin (BV), carbon monoxide (CO) and ferrous iron. Although mostly beneficial, the HO reaction can also produce deleterious effects, predominantly attributed to excessive product formation.

View Article and Find Full Text PDF

Objectives: To determine the production of 9-hydroxyoctadecadienoic acid and 13-hydroxyoctadecadienoic acid during cardiopulmonary bypass in infants and children undergoing cardiac surgery, evaluate their relationship with increase in cell-free plasma hemoglobin, provide evidence of bioactivity through markers of inflammation and vasoactivity (WBC count, milrinone use, vasoactive-inotropic score), and examine their association with overall clinical burden (ICU/hospital length of stay and mechanical ventilation duration).

Design: Prospective observational study.

Setting: Twelve-bed cardiac ICU in a university-affiliated children's hospital.

View Article and Find Full Text PDF

In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs.

View Article and Find Full Text PDF

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that are crucial for the regulation of immune responses in cancer. These cells contribute to the failure of cancer therapies and are associated with poor clinical outcomes. Despite recent advances in the understanding of PMN-MDSC biology, the mechanisms responsible for the pathological activation of neutrophils are not well defined, and this limits the selective targeting of these cells.

View Article and Find Full Text PDF

"Redox lipidomics technology: Looking for a needle in a haystack".

Chem Phys Lipids

July 2019

Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Pharmacology and Chemical Biology, Pittsburgh, PA, USA; Radiation Oncology, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia. Electronic address:

Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics.

View Article and Find Full Text PDF

Surface-Binding to Cardiolipin Nanodomains Triggers Cytochrome c Pro-apoptotic Peroxidase Activity via Localized Dynamics.

Structure

May 2019

Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands. Electronic address:

The peroxidation of cardiolipins by reactive oxygen species, which is regulated and enhanced by cytochrome c (cyt c), is a critical signaling event in mitochondrial apoptosis. We probe the molecular underpinnings of this mitochondrial death signal through structural and functional studies of horse heart cyt c binding to mixed-lipid membranes containing cardiolipin with mono- and polyunsaturated acyl chains. Lipidomics reveal the selective oxidation of polyunsaturated fatty acid (PUFA) cardiolipin (CL), while multidimensional solid-state NMR probes the structure and dynamics of the membrane and the peripherally bound protein.

View Article and Find Full Text PDF

Objectives: Brain mitochondrial dysfunction limits neurologic recovery after cardiac arrest. Brain polyunsaturated cardiolipins, mitochondria-unique and functionally essential phospholipids, have unprecedented diversification. Since brain cardiolipins are not present in plasma normally, we hypothesized their appearance would correlate with brain injury severity early after cardiac arrest and return of spontaneous circulation.

View Article and Find Full Text PDF