7 results match your criteria: "IIBR-Israel Institute for Biological Research[Affiliation]"

Novichoks is the latest known class of organophosphorus nerve agents to be developed. These highly lethal persistent agents, which exert their toxicity mainly through dermal exposure, pose new major challenges in mitigating their effect, mainly in respect to decontamination and medical countermeasures. Herein we report on the effective degradation of Novichok agents (A-230, A-232 and A-234) by hydroxamic acid salts.

View Article and Find Full Text PDF

Low-volatility organophosphorus chemical warfare agents (OP CWAs) are cholinesterase inhibitors which easily absorb into the skin, leading to the formation of a dermal depot from which they slowly enter the bloodstream. This leads to sustained cholinergic hyperstimulation, which if untreated may lead to death. However, current available countermeasures are not adequate to neutralize the agent residing in the dermal depot.

View Article and Find Full Text PDF

Dermal exposure to low volatility organophosphorus chemical warfare agents (OP CWA) poses a great risk to the exposed person. Due to their lipophilic nature, these compounds rapidly absorb into the skin, leading to the formation of a "dermal reservoir" from which they slowly enter the bloodstream causing prolonged intoxication. Traditionally, strategies to counter the toxicity of such substances consist of chemical decontamination/physical removal of the residual agent from the skin surface (preferably as soon as possible following the exposure) and administration of antidotes in the case of intoxication signs.

View Article and Find Full Text PDF

A novel SWIFT-based strategy for fluorimetric detection of practical amounts (minimal effective dose or lower) of chemical warfare agents is reported. This strategy employs readily available reagents and allows distinguishing between the V and G agents, as well as their discrimination from potential interferents.

View Article and Find Full Text PDF

The synthesis of P-chirogenic (±)-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent.

View Article and Find Full Text PDF

Potential energy surfaces for the nucleophilic displacements at phosphorus in dimethyl methyl-, chloromethyl-, dichloromethyl-, and trichloromethylphosphonates have been computed at the B3LYP/6-31+G* level of theory, using IEF-PCM to account for the solvent effect. The results reveal that sequential addition of chlorine substituents on the methyl phosphonates increases the stability of transition states and intermediates which facilitate P-C bond cleavage. Thus, while nonsubstituted dimethyl methylphosphonate and dimethyl chloromethylphosphonate may undergo exclusive P-O bond cleavage, the trichlorinated analogue exclusively undergoes P-C bond dissociation.

View Article and Find Full Text PDF

Clean endocyclic C-O bond cleavage has been achieved in the reactions of 5-membered phosphate triesters with various nucleophiles.

View Article and Find Full Text PDF