36 results match your criteria: "IFOM (Foundation FIRC Institute of Molecular Oncology)[Affiliation]"
Commun Biol
May 2022
IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy.
Mechanosignaling, initiated by extracellular forces and propagated through the intracellular cytoskeletal network, triggers signaling cascades employed in processes as embryogenesis, tissue maintenance and disease development. While signal transduction by transcription factors occurs downstream of cellular mechanosensing, little is known about the cell intrinsic mechanisms that can regulate mechanosignaling. Here we show that transcription factor PREP1 (PKNOX1) regulates the stiffness of the nucleus, the expression of LINC complex proteins and mechanotransduction of YAP-TAZ.
View Article and Find Full Text PDFNat Commun
April 2022
Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
Pathways that direct the selection of the telomerase-dependent or recombination-based, alternative lengthening of telomere (ALT) maintenance pathway in cancer cells are poorly understood. Using human lung cancer cells and tumor organoids we show that formation of the 2,2,7-trimethylguanosine (TMG) cap structure at the human telomerase RNA 5' end by the Trimethylguanosine Synthase 1 (TGS1) is central for recruiting telomerase to telomeres and engaging Cajal bodies in telomere maintenance. TGS1 depletion or inhibition by the natural nucleoside sinefungin impairs telomerase recruitment to telomeres leading to Exonuclease 1 mediated generation of telomere 3' end protrusions that engage in RAD51-dependent, homology directed recombination and the activation of key features of the ALT pathway.
View Article and Find Full Text PDFNat Cell Biol
February 2022
IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, Italy.
Ageing organisms accumulate senescent cells that are thought to contribute to body dysfunction. Telomere shortening and damage are recognized causes of cellular senescence and ageing. Several human conditions associated with normal ageing are precipitated by accelerated telomere dysfunction.
View Article and Find Full Text PDFNat Commun
January 2022
Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
Defects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch-mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), known to be more common in the elderly, who also show more severe symptoms and are at higher risk of hospitalization and death. Here, we show that the expression of the angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 cell receptor, increases during aging in mouse and human lungs. ACE2 expression increases upon telomere shortening or dysfunction in both cultured mammalian cells and in vivo in mice.
View Article and Find Full Text PDFIn contrast to their molecular mode of action, the system-level effect of antibiotics on cells is only beginning to be quantified. Molecular crowding is expected to be a relevant global regulator, which we explore here through the dynamic response phenotypes in , at single-cell resolution, under sub-lethal regimes of different classes of clinically relevant antibiotics, acting at very different levels in the cell. We measure chromosomal mobility through tracking of fast (<15 s timescale) fluctuations of fluorescently tagged chromosomal loci, and we probe the fluidity of the cytoplasm by tracking cytosolic aggregates.
View Article and Find Full Text PDFSci Rep
October 2020
IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
Both onco-suppressor PREP1 and the oncogene MEIS1 bind to PBX1. This interaction stabilizes the two proteins and allows their translocation into the nucleus and thus their transcriptional activity. Here, we have combined cross-linking mass-spectrometry and systematic mutagenesis to detail the binding geometry of the PBX1-PREP1 (and PBX1-MEIS1) complexes, under native in vivo conditions.
View Article and Find Full Text PDFTrends Genet
April 2021
IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy; Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy. Electronic address:
Subcellular compartmentalization contributes to the organization of a plethora of molecular events occurring within cells. This can be achieved in membraneless organelles generated through liquid-liquid phase separation (LLPS), a demixing process that separates and concentrates cellular reactions. RNA is often a critical factor in mediating LLPS.
View Article and Find Full Text PDFAgeing Res Rev
September 2020
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, 4072, Australia.
Telomeres, the ends of eukaryotic chromosomes, play a central role in the control of cellular senescence and organismal ageing and need to be protected in order to avoid being recognised as damaged DNA and activate DNA damage response pathways. Dysfunctional telomeres arise from critically short telomeres or altered telomere structures, which ultimately lead to replicative cellular senescence and chromosome instability: both hallmarks of ageing. The observation that telomeres are transcribed led to the discovery that telomeric transcripts play important roles in chromosome end protection and genome stability maintenance.
View Article and Find Full Text PDFNat Commun
November 2019
IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy.
Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disorder characterized by premature aging features. Cells from HGPS patients express progerin, a truncated form of Lamin A, which perturbs cellular homeostasis leading to nuclear shape alterations, genome instability, heterochromatin loss, telomere dysfunction and premature entry into cellular senescence. Recently, we reported that telomere dysfunction induces the transcription of telomeric non-coding RNAs (tncRNAs) which control the DNA damage response (DDR) at dysfunctional telomeres.
View Article and Find Full Text PDFPrep1 (pKnox1) is a homeodomain transcription factor of the TALE superclass whose members can act as co-factors of Hox. Prep1 is essential for embryogenesis, but in the adult it also acts as a tumor suppressor. We describe and analyze here the available mutant mice, their phenotypes and a few discordant cases.
View Article and Find Full Text PDFNat Protoc
April 2018
Division of Genomic Technologies, RIKEN Yokohama Campus, RIKEN Center for Life Science Technologies, Tsurumi-Ku, Yokohama, Japan.
Identification of important, functional small RNA (sRNA) species is currently hampered by the lack of reliable and sensitive methods to isolate and characterize them. We have developed a method, termed target-enrichment of sRNAs (TEsR), that enables targeted sequencing of rare sRNAs and diverse precursor and mature forms of sRNAs not detectable by current standard sRNA sequencing methods. It is based on the amplification of full-length sRNA molecules, production of biotinylated RNA probes, hybridization to one or multiple targeted RNAs, removal of nontargeted sRNAs and sequencing.
View Article and Find Full Text PDFMutat Res
March 2018
IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy. Electronic address:
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) controls one of the most frequently used DNA repair pathways in a cell, the non-homologous end joining (NHEJ) pathway. However, the exact role of DNA-PKcs in NHEJ remains poorly defined. Here we show that NOTCH1 attenuates DNA-PKcs-mediated autophosphorylation, as well as the phosphorylation of its specific substrate XRCC4.
View Article and Find Full Text PDFSci Rep
February 2018
IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy.
The synthesis of middle-to-late-replicating DNA can be affected independently of the rest of the genome by down-regulating the tumor suppressor PREP1 (PKNOX1). Indeed, DNA combing shows that PREP1 down-regulation affects DNA replication rate, increases the number of simultaneously firing origins and the asymmetry of DNA replication, leading to DNA damage. Genome-wide analysis of replication timing by Repli-seq shows that, upon PREP1 down-regulation, 25% of the genome is replicated earlier in the S-phase.
View Article and Find Full Text PDFCell Death Dis
July 2017
Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy.
The cohesin complex is mutated in cancer and in a number of rare syndromes collectively known as Cohesinopathies. In the latter case, cohesin deficiencies have been linked to transcriptional alterations affecting Myc and its target genes. Here, we set out to understand to what extent the role of cohesins in controlling cell cycle is dependent on Myc expression and activity.
View Article and Find Full Text PDFFEBS J
July 2017
Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia, Italy.
The fine modulation of transcriptional activity around DNA lesions is essential to carefully regulate the crosstalk between the activation of the DNA damage response, DNA repair and transcription, particularly when the lesion occurs next to actively transcribed genes. Recently, several studies have been carried out to investigate how DNA lesions impact on local transcription, but the emerging model remains incomplete. Transcription of genes around damaged DNA is actively downregulated by the DNA damage response through different mechanisms, which appear specific to the chromatin context, the type of DNA damage or its complexity.
View Article and Find Full Text PDFJ Mol Biol
October 2017
IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 27100, Italy. Electronic address:
Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination.
View Article and Find Full Text PDFEMBO J
May 2015
Leibniz Institute of Age Research, Fritz Lipmann Institute e.V., Jena, Germany
The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy-controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process.
View Article and Find Full Text PDFEMBO Rep
February 2015
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
PLoS One
February 2016
IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, Milan, Italy; Istituto di Genetica Molecolare, CNR, Pavia, Italy.
The DNA damage response (DDR) is activated upon DNA damage generation to promote DNA repair and inhibit cell cycle progression in the presence of a lesion. Cellular senescence is a permanent cell cycle arrest characterized by persistent DDR activation. However, some reports suggest that DDR activation is a feature only of early cellular senescence that is then lost with time.
View Article and Find Full Text PDFCurr Opin Genet Dev
June 2014
IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy. Electronic address:
The DNA damage response (DDR) orchestrates DNA repair and halts cell cycle. If damage is not resolved, cells can enter into an irreversible state of proliferative arrest called cellular senescence. Organismal ageing in mammals is associated with accumulation of markers of cellular senescence and DDR persistence at telomeres.
View Article and Find Full Text PDFWork carried out primarily in the laboratory of Fabrizio d'Adda di Fagagna unveils the mitogenic properties of Ras-induced reactive oxygen species (ROS) and their relationship with the DNA damage response. Combined data from studies of cultured cells, zebrafish models, and clinical material consistently support a role of the RAS-RAC1-NOX4 axis in ROS induction, hyperproliferation, and senescence.
View Article and Find Full Text PDFNat Commun
April 2014
European Institute of Oncology, Department of Experimental Oncology, Milan 20139, Italy.
The ability of PRC1 and PRC2 to promote proliferation is a main feature that links polycomb (PcG) activity to cancer. PcGs silence the expression of the tumour suppressor locus Ink4a/Arf, whose products positively regulate pRb and p53 functions. Enhanced PcG activity is a frequent feature of human tumours, and PcG inhibition has been proposed as a strategy for cancer treatment.
View Article and Find Full Text PDFThe generation of DNA lesions and the resulting activation of DNA damage response (DDR) pathways are both affected by the chromatin status at the site of damaged DNA. In turn, DDR activation affects the chromatin at both the damaged site and across the whole genome. Cellular senescence and cancer are associated with the engagement of the DDR pathways and with profound chromatin changes.
View Article and Find Full Text PDFNature
August 2012
IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy.
Non-coding RNAs (ncRNAs) are involved in an increasingly recognized number of cellular events. Some ncRNAs are processed by DICER and DROSHA RNases to give rise to small double-stranded RNAs involved in RNA interference (RNAi). The DNA-damage response (DDR) is a signalling pathway that originates from a DNA lesion and arrests cell proliferation3.
View Article and Find Full Text PDF