4 results match your criteria: "IDLab-AIRO - Ghent University - imec[Affiliation]"

Plants are complex organisms subject to variable environmental conditions, which influence their physiology and phenotype dynamically. We propose to interpret plants as reservoirs in physical reservoir computing. The physical reservoir computing paradigm originates from computer science; instead of relying on Boolean circuits to perform computations, any substrate that exhibits complex non-linear and temporal dynamics can serve as a computing element.

View Article and Find Full Text PDF

Monitoring climate change, and its impacts on ecological, agricultural, and other societal systems, is often based on temperature data derived from official weather stations. Yet, these data do not capture most microclimates, influenced by soil, vegetation and topography, operating at spatial scales relevant to the majority of organisms on Earth. Detecting and attributing climate change impacts with confidence and certainty will only be possible by a better quantification of temperature changes in forests, croplands, mountains, shrublands, and other remote habitats.

View Article and Find Full Text PDF

Plant leaf stomata are the gatekeepers of the atmosphere-plant interface and are essential building blocks of land surface models as they control transpiration and photosynthesis. Although more stomatal trait data are needed to significantly reduce the error in these model predictions, recording these traits is time-consuming, and no standardized protocol is currently available. Some attempts were made to automate stomatal detection from photomicrographs; however, these approaches have the disadvantage of using classic image processing or targeting a narrow taxonomic entity which makes these technologies less robust and generalizable to other plant species.

View Article and Find Full Text PDF

The study of the dynamic responses of plants to short-term environmental changes is becoming increasingly important in basic plant science, phenotyping, breeding, crop management, and modelling. These short-term variations are crucial in plant adaptation to new environments and, consequently, in plant fitness and productivity. Scalable, versatile, accurate, and low-cost data-logging solutions are necessary to advance these fields and complement existing sensing platforms such as high-throughput phenotyping.

View Article and Find Full Text PDF