15 results match your criteria: "Huazhong Institute of Electro-Optics[Affiliation]"

Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser.

Micromachines (Basel)

October 2024

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • The study details the creation of micro/nano structures using femtosecond laser processing, which incorporate periodic microstructures, LIPSS, and nanoparticles.
  • Perfluorosilane modification was applied to develop hydrophobic characteristics, resulting in an impressive reflective reduction of silicon surfaces to 3.0% and a high contact angle of 172.3°, indicating superhydrophobicity.
  • The research contributes to understanding anti-reflection and superhydrophobicity mechanisms while offering new design methods for self-cleaning and anti-reflective surfaces.
View Article and Find Full Text PDF

Active Compensation Technology for the Target Measurement Error of Two-Axis Electro-Optical Measurement Equipment.

Sensors (Basel)

February 2024

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

For two-axis electro-optical measurement equipment, there are many error sources in parts manufacturing, assembly, sensors, calibration, and so on, which cause some random errors in the final measurement results of the target. In order to eliminate the random measurement error as much as possible and improve the measurement accuracy, an active compensation technique for target measurement error is proposed in this paper. Firstly, the error formation mechanism and error transfer model establishment of the two-axis electro-optical measurement equipment were studied, and based on that, three error compensation and correction methods were proposed: the least square (LS)-based error compensation method, adaptive Kalman filter(AKF)-based error correction method, and radial basis function neural network (RBFNN)-based error compensation method.

View Article and Find Full Text PDF

The cavity optomechanical accelerometer based on photonic crystal microcavities combines mechanical resonators with high-quality factor photonic crystal cavities. The mechanical vibrator is sensitive to weak force/displacement in mechanical resonance modes, which can achieve extremely low noise levels and theoretically reach the standard qillatum noise limit. It is an important development direction for high-precision accelerometers.

View Article and Find Full Text PDF

SiCp/Al composites have excellent physical properties and are widely used in aerospace and other fields. Because of their poor machinability, they are often machined by non-traditional machining methods such as electrical discharge machining (EDM). In the process of EDM, due to the "shielding" effect of the reinforced particles of SiC, the local ejection force is low during the processing process, and it is difficult to throw the reinforced particles smoothly, which ultimately leads to a low material removal rate and poor surface quality.

View Article and Find Full Text PDF

To realize high-performance line of sight (LOS) stabilization control of the optronic mast under high oceanic conditions and big swaying movements of platforms, a composite control method based on an adaptive radial basis function neural network (RBFNN) and sliding mode control (SMC) is proposed. The adaptive RBFNN is used to approximate the nonlinear and parameter-varying ideal model of the optronic mast, so as to compensate for the uncertainties of the system and reduce the big-amplitude chattering phenomenon caused by excessive switching gain in SMC. The adaptive RBFNN is constructed and optimized online based on the state error information in the working process; therefore, no prior training data are required.

View Article and Find Full Text PDF

Microstructure and Mechanical Properties of Core-Shell BC-Reinforced Ti Matrix Composites.

Materials (Basel)

January 2023

State Key Laboratory of Advanced Welding and Jointing, Harbin Institute of Technology, Harbin 150001, China.

Composite material uses ceramic reinforcement to add to the metal matrix to obtain higher material properties. Structural design is an important direction of composite research. The reinforcement distribution of the core-shell structure has the unique advantages of strong continuity and uniform stress distribution.

View Article and Find Full Text PDF

In the present study, the effects of SiC nanowires (SiCnws) with diameters of 100 nm, 250 nm and 450 nm on the microstructure and mechanical behavior of 20 vol.% SiCnws/6061Al composites prepared by pressure infiltration were studied. It was found that the interface between SiCnws and Al matrix was well bonded, and no interface product was found.

View Article and Find Full Text PDF

We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology.

View Article and Find Full Text PDF

Extending the Validity of Squeeze Film Damping Models with Lower Aspect Ratios.

Sensors (Basel)

January 2022

Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an 710072, China.

Squeeze film air damping is a significant factor in the design of MEMS devices owing to its great impact on the dynamic performance of vibrating structures. However, the traditional theoretical results of squeeze film air damping are derived from the Reynolds equation, wherein there exists a deviation from the true results, especially in low aspect ratios. While expensive efforts have been undertaken to prove that this deviation is caused by the neglect of pressure change across the film, a quantitative study has remained elusive.

View Article and Find Full Text PDF

A Temperature Control Method for Microaccelerometer Chips Based on Genetic Algorithm and Fuzzy PID Control.

Micromachines (Basel)

December 2021

State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China.

External temperature changes can detrimentally affect the properties of a microaccelerometer, especially for high-precision accelerometers. Temperature control is the fundamental method to reduce the thermal effect on microaccelerometer chips, although high-performance control has remained elusive using the conventional proportional-integral-derivative (PID) control method. This paper proposes a modified approach based on a genetic algorithm and fuzzy PID, which yields a profound improvement compared with the typical PID method.

View Article and Find Full Text PDF

Investigation of a complete squeeze-film damping model for MEMS devices.

Microsyst Nanoeng

July 2021

Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 710072 Xi'an, Shaanxi China.

Dynamic performance has long been critical for micro-electro-mechanical system (MEMS) devices and is significantly affected by damping. Different structural vibration conditions lead to different damping effects, including border and amplitude effects, which represent the effect of gas flowing around a complicated boundary of a moving plate and the effect of a large vibration amplitude, respectively. Conventional models still lack a complete understanding of damping and cannot offer a reasonably good estimate of the damping coefficient for a case with both effects.

View Article and Find Full Text PDF

Design and Modification of a High-Resolution Optical Interferometer Accelerometer.

Sensors (Basel)

March 2021

Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an 710072, China.

The Micro-Opto-Electro-Mechanical Systems (MOEMS) accelerometer is a new type of accelerometer that combines the merits of optical measurement and Micro-Electro-Mechanical Systems (MEMS) to enable high precision, small volume, and anti-electromagnetism disturbance measurement of acceleration, which makes it a promising candidate for inertial navigation and seismic monitoring. This paper proposes a modified micro-grating-based accelerometer and introduces a new design method to characterize the grating interferometer. A MEMS sensor chip with high sensitivity was designed and fabricated, and the processing circuit was modified.

View Article and Find Full Text PDF

Highly Luminescent and Stable CsPbI Perovskite Nanocrystals with Sodium Dodecyl Sulfate Ligand Passivation for Red-Light-Emitting Diodes.

J Phys Chem Lett

March 2021

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, P. R. China.

CsPbI perovskite nanocrystals (NCs) have recently emerged as promising materials for optoelectronic devices because of their superior properties. However, the poor stability of the CsPbI NCs induced by easy ligand desorption represents a key issue limiting their practical applications. Herein, we report stable and highly luminescent black-phase CsPbI NCs passivated by novel ligands of sodium dodecyl sulfate (SDS).

View Article and Find Full Text PDF

Supercapacitors (SCs) have attracted many attentions and already became part of some high-power derived devices such as Tesla's electric cars because of their higher power density. Among all types of electrical energy storage devices, battery-supercapacitors are the most promising for superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC usually consists of two foremost components, namely electrode materials, and electrolyte.

View Article and Find Full Text PDF

The mechanical dithered ring laser gyro (RLG) effectively overcomes the lock-in effect and ensures the sensitive accuracy of the low angular rate for the gyro. However, in the inertial measurement unit (IMU) system, the dither excitation of three RLGs causes the coupled vibration of the IMU structure, which could seriously limit the measuring accuracy of RLGs. In this paper, the vibration frequency response characteristic of laser gyro IMU is taken as the focus point, and the method of multi-rigid body dynamics is used to establish the dynamic model of IMU suitable for vibration frequency response analysis.

View Article and Find Full Text PDF